98%
921
2 minutes
20
The construction of artificial solar fuel generating systems requires the heterogenization of large quantities of catalytically active sites on electrodes. In that sense, metal-organic frameworks (MOFs) have been utilized to assemble unpreceded concentration of electrochemically active molecular catalysts to drive energy-conversion electrocatalytic reactions. However, despite recent advances in MOF-based electrocatalysis, so far no attempt has been made to exploit their unique chemical modularity in order to tailor the electrocatalytic function of MOF-anchored active sites at the molecular level. Here, we show that the axial coordination of electron-donating ligands to active MOF-installed Fe-porphyrins dramatically alters their electronic properties, accelerating the rates of both redox-based MOF conductivity and the electrocatalytic oxygen reduction reaction (ORR). Additionally, electrochemical characterizations show that in multiple proton-coupled electron transfer reactions MOF-based redox hopping is not the only factor that limits the overall electrocatalytic rate. Hence, future efforts to enhance the efficiency of electrocatalytic MOFs should also consider other important kinetic parameters such as the rate of proton-associated chemical steps as well as mass-transport rates of counterions, protons, and reactants toward catalytically active sites.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7467674 | PMC |
http://dx.doi.org/10.1021/jacs.9b11355 | DOI Listing |
J Chem Inf Model
September 2025
School of Medicine and Warshel Institute for Computational Biology, The Chinese University of Hong Kong─Shenzhen, Shenzhen, Guangdong 518172, China.
Argonaute (Ago) is a DNA-guided programmable endonuclease with emerging applications in genome engineering, yet the rate-determining dynamic mechanisms governing its transition from guide-target hybridization to catalytic activation remain unresolved. Here, we employ molecular dynamics simulations and the Traveling-salesman-based Automated Path Searching (TAPS) approach to dissect the target DNA recognition in the middle region (nt 9-12) of Ago. We designed two paths to tackle this problem: one assumed that coordination of the target DNA backbone occurs before base-pairing between the target and guide DNA; the other hypothesized a concerted transition without preferred order between backbone-coordination and base-pairing.
View Article and Find Full Text PDFUrol Oncol
September 2025
Nutritional, Genes and Human Disease Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh. Electronic address:
Background: Understanding the mutational landscape is critical for elucidating the molecular mechanisms driving cancer progression. This study aimed to profile somatic mutations in bladder cancer patients (N=7) from Bangladesh to provide insights into the genetic alterations underlying this malignancy.
Methods: We performed targeted sequencing of 50 oncogenes and tumor suppressor genes using the Ion AmpliSeq Cancer Hotspot Panel v2 on tumor and matched blood samples from seven bladder cancer patients.
Environ Res
September 2025
Center for High Technology Development, Nguyen Tat Thanh University, Ho Chi Minh City Hi-Tech Park, Ho Chi Minh City, Vietnam; Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam. Electronic address:
The development of novel multijunction heterostructure photocatalysts is critical for the efficient degradation of organic pollutants, attributed to their ability to enhance the separation of photogenerated electron-hole pairs. In our study, a ternary composite, melem/BiVO/g-CN (BVO/CNMH), was synthesized via an acid-soaking method followed by calcination, using g-CN as a sacrificial precursor in the presence of BiVO. This approach yielded a porous, interconnected architecture in BVO/CNMH.
View Article and Find Full Text PDFCell Genom
September 2025
Computational Regulatory Genomics, Berlin Institute for Medical Systems Biology of the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 10115 Berlin, Germany; Department of Biology, Humboldt Universität Berlin, 10117 Berlin, Germany. Electronic address: uwe.ohler@mdc-berlin
Enhancers are known to spatiotemporally regulate gene transcription, yet the identification of enhancers and their target genes is often indirect, low resolution, and/or assumptive. To identify and functionally perturb enhancers at their endogenous sites, we performed a pooled tiling CRISPR activation (CRISPRa) screen surrounding PHOX2B, a master regulator of neuronal cell fate and a key player in neuroblastoma, and found many CRISPRa-responsive elements (CaREs) that alter cellular growth. To determine CaRE target genes, we developed TESLA-seq (targeted single-cell activation), which combines CRISPRa screening with targeted single-cell RNA sequencing and enables the parallel readout of the effect of hundreds of enhancers on all genes in the locus.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China. Electronic address:
The 5-hydroxymethylfurfural electrooxidation reaction (HMFOR) stands out due to the value-added production and mild conditions. However, its catalytic efficiency is hampered by sluggish kinetics. Herein, with a focus on optimizing the adsorption and activation of reaction molecules, a CoN-WN heterostructure catalyst is constructed for efficient HMFOR.
View Article and Find Full Text PDF