The Interaction between Amyloid Prefibrillar Oligomers of Salmon Calcitonin and a Lipid-Raft Model: Molecular Mechanisms Leading to Membrane Damage, Ca-Influx and Neurotoxicity.

Biomolecules

Grupo Productos Naturales Marinos, Facultad de Ciencias Farmacéuticas y Alimentarias, Instituto de Física, Universidad de Antioquia, Calle 70 No. 52-21, Medellín 050010, Colombia.

Published: December 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

To investigate the interaction between amyloid assemblies and "lipid-rafts", we performed functional and structural experiments on salmon calcitonin (sCT) solutions rich in prefibrillar oligomers, proto- and mature-fibers interacting with liposomes made of monosialoganglioside-GM1 (4%), DPPC (48%) and cholesterol (48%). To focus on the role played by electrostatic forces and considering that sCT is positive and GM1 is negative at physiologic pH, we compared results with those relative to GM1-free liposomes while, to assess membrane fluidity effects, with those relative to cholesterol-free liposomes. We investigated functional effects by evaluating Ca-influx in liposomes and viability of HT22-DIFF neurons. Only neurotoxic solutions rich in unstructured prefibrillar oligomers were able to induce Ca-influx in the "lipid-rafts" model, suggesting that the two phenomena were correlated. Thus, we investigated protein conformation and membrane modifications occurring during the interaction: circular dichroism showed that "lipid-rafts" fostered the formation of β-structures and energy filtered-transmission electron microscopy that prefibrillar oligomers formed pores, similar to Aβ did. We speculate that electrostatic forces between the positive prefibrillar oligomers and the negative GM1 drive the initial binding while the hydrophobic profile and flexibility of prefibrillar oligomers, together with the membrane fluidity, are responsible for the subsequent pore formation leading to Ca-influx and neurotoxicity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7022306PMC
http://dx.doi.org/10.3390/biom10010058DOI Listing

Publication Analysis

Top Keywords

prefibrillar oligomers
24
interaction amyloid
8
salmon calcitonin
8
ca-influx neurotoxicity
8
solutions rich
8
electrostatic forces
8
membrane fluidity
8
prefibrillar
6
oligomers
6
amyloid prefibrillar
4

Similar Publications

Prefibrillar structures of the amyloid-β (Aβ) peptide are central to cytotoxicity in Alzheimer's disease. Time-resolved imaging of oligomers has enabled quantification of their extension. A snapshot of these prefibrillar assemblies has been characterized using a combination of cryo-electron tomography (cryo-ET), cryo-electron microscopy (cryo-EM) single-particle analysis, and atomic force microscopy (AFM).

View Article and Find Full Text PDF

Multiple findings underline a link between altered brain cholesterol metabolism and Alzheimer's disease (AD) pathogenesis. Physiologically, excess brain cholesterol is mainly converted into 24-hydroxycholesterol (24-OHC) by the neuron-specific enzyme CYP46A1. Of note, we previously observed in autopsy specimens from human AD brains that 24-OHC and, in parallel, CYP46A1 expression decrease at advanced stages, suggesting a possible cause-effect between these reductions and AD progression.

View Article and Find Full Text PDF

Even though the number of patients suffering from Alzheimer's Disease (AD) is rapidly growing worldwide, only a few symptomatic treatments have been approved for clinical use, pointing out the urgent need for more effective disease-modifying therapies that actually alter the progression of this neurodegenerative disorder which is characterized by co-occurence of both Amyloid beta (Aβ) and tau neuropathologies. Preclinical and clinical evidence suggests that a link between Aβ and tau drives the entire continuum of AD pathobiology. 12A12 is a monoclonal antibody (mAb) which offers neuroprotection into two transgenic lines of AD, including Tg2576 that overexpresses Swedish mutation (KM670/671NL) of Amyloid Precursor Protein (APP, isoform 695) and 3xTg (APP Swedish, MAPT P301L, and PSEN1 M146V), by targeting the 20-22kDa N-terminal tau fragments (NHhtau).

View Article and Find Full Text PDF

Probing the relationships between self-assembly and the antimicrobial activity of amyloidogenic peptides: The islet amyloid polypeptide as a case study.

Biochim Biophys Acta Gen Subj

June 2025

Department of Chemistry, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montreal H3C 3P8, Canada; Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Canada. Electronic address:

Antimicrobial peptides (AMPs) are key components of the innate immune system across diverse organisms. Interestingly, some AMPs can adopt β-sheet secondary structure and self-assemble into amyloid-like fibrils. Recent works have also revealed that amyloidogenic peptides exhibit antimicrobial properties and share a common mechanism of plasma membrane perturbation with AMPs.

View Article and Find Full Text PDF

Glaucoma is a group of neurodegenerative diseases that together are the leading cause of irreversible blindness worldwide. Myocilin-associated glaucoma is an inherited form of this disease, caused by intracellular aggregation of misfolded mutant myocilin. In vitro, the myocilin C-terminal olfactomedin domain (OLF), the relevant domain for glaucoma pathogenesis, can be driven to form amyloid-like fibrils under mild conditions.

View Article and Find Full Text PDF