98%
921
2 minutes
20
Rotaviruses (RV) cause acute severe diarrhea in the absence of substantial intestinal inflammation. They are also highly infectious in their homologous host species. The replication capacity of RV in the small bowel is substantially due to its ability to inhibit different types of interferons (IFNs). Here, we found that during RV infection , both virus-infected and uninfected bystander cells resist STAT1 phosphorylation and interferon regulatory factor 7 (IRF7) induction in response to exogenous interferon (IFN). Functionally, cellular transcription in response to stimulation with IFN, but not intracellular double-stranded RNA (dsRNA), was inhibited by RV. Further, IFNAR1 stimulation during RV infection significantly repressed a set of virus-induced transcripts. Regulation of IFN signaling was studied in suckling mice using the highly infectious murine EW RV strain. Kinetic studies indicated that sustained EW RV replication and IFN induction in the small intestine are accompanied by significant decreases in IFN-stimulated transcripts. Lipopolysaccharide (LPS)-mediated intestinal damage, driven by STAT1-induced inflammation, was also prevented in EW RV-infected mice. Remarkably, by ectopically stimulating either IFNAR1 or IFNGR1 in EW RV-infected mice, we could eliminate several intestinal antiviral and inflammatory transcriptional responses to RV. In contrast to infection with homologous RV, infection with a STAT1-sensitive heterologous RV strain induced IFN-stimulated transcripts, inflammatory cytokines, and intestinal expression of STAT1-pY701. Finally, RV strain-specific STAT1 regulation also likely determines the intestinal activation of multiple caspases. The simian RRV strain, but not murine EW RV, uniquely triggers the cleavage of both extrinsic and intrinsic caspases (caspases 8, 9, and 3) in a STAT1-mediated manner. Collectively, our findings reveal efficient reprograming of multiple IFN receptors toward a negative-feedback mode of signaling, accompanied by suppression of IFN-mediated antiviral, apoptotic, and inflammatory functions, during natural RV intestinal infection. Rotavirus is a highly infectious pathogen that causes severe diarrhea. Replication of RV in the small intestine is restricted to homologous host species, and host range restriction is substantially determined by the interferon response. In this study, we demonstrate that during infection, RV bystander cells resist exogenous IFN-mediated STAT1 signaling and transcription. In a suckling mouse model, ectopically stimulating different intestinal interferon receptors during RV infection eliminates several innate and inflammatory antiviral responses. Different intestinal inflammatory cytokines were also suppressed by homologous RV, as was intestinal damage in response to endotoxin. The ability of RV to suppress IFN-mediated receptors likely impacts intestinal cell homeostasis, as the cleavage of multiple intestinal caspases during RV infection is mediated by the IFN-STAT1 signaling pathway. Together, our results provide a mechanism underlying both the remarkable interferon resistance of homologous RV and its ability to prevent substantial inflammatory damage to the small bowel.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7158711 | PMC |
http://dx.doi.org/10.1128/JVI.01775-19 | DOI Listing |
Brain Behav
September 2025
Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
Introduction: Anxiety and stress are prevalent mental health issues. Traditional drug treatments often come with unwanted side effects and may not produce the desired results. As an alternative, probiotics are being used as a treatment option due to their lack of specific side effects.
View Article and Find Full Text PDFLiver Int
October 2025
Division of Gastroenterology, Acireale Hospital, Azienda Sanitaria Provinciale di Catania, Catania, Italy.
Background And Aims: Gut-liver axis has been implicated in the pathophysiology of cirrhosis due to metabolic dysfunction-associated steatotic liver disease (MASLD), an in vitro model for studying epithelial gut dysfunction in MASLD is lacking. In this study, we aimed to characterise intestinal organoids derived from subjects with MASLD.
Materials And Methods: Intestinal organoids were obtained from duodenal samples of individuals with non-fibrotic MASLD and with MASLD-cirrhosis.
J Innate Immun
August 2025
Piezo-type mechanosensitive ion channel component 1 (Piezo1) is an evolutionarily conserved and multifunctional mechanosensitive ion channel protein that has emerged as a significant contributor to the pathogenesis of inflammatory bowel disease (IBD). Piezo1 plays a crucial role in regulating intestinal barrier integrity, immune responses, and the intestinal nervous system, thereby influencing disease progression. Its expression patterns correlate with disease severity and inflammatory markers in IBD patients, indicating its potential as a diagnostic and prognostic biomarker.
View Article and Find Full Text PDFJPEN J Parenter Enteral Nutr
September 2025
Department of Gastroenterology, Austin Health, Heidelberg, Victoria, Australia.
Background: Hospitalized patients may require nutrition support because of inadequate intake or impaired gut function. Enteral nutrition is preferred over parenteral nutrition because of fewer complications and earlier return of gut function. This study describes peripheral parenteral nutrition (PPN) use in an Australian tertiary center, evaluating its indications, incidence of adverse effects, and outcomes without the support of a nutrition support service.
View Article and Find Full Text PDFGenome Biol
September 2025
Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 611730, China.
Background: Fish are the largest group of vertebrates. Studying the characteristics, functions, and interactions of different fish cells is important for understanding their roles in disease and evolution. However, most single cell RNA-seq studies in fish are restricted to a few specific organs, leaving a comprehensive cell landscape that aims to characterize the heterogeneity and connections among body-wide organs largely unexplored.
View Article and Find Full Text PDF