Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Salt stress causes nutritional imbalance and ion toxicity which affects wheat growth and production. A population of recombinant inbred lines (RILs) were developed by crossing Pasban90 (salt tolerant) and Frontana (salt suceptible) for identification of quantitative trait loci (QTLs) for physiological traits including relative water content, membrane stability index, water potential, osmotic potential, total chlorophyll content, chlorophyll a, chlorophyll b and biochemical traits including proline contents, superoxide dismutase, sodium content, potassium content, chloride content and sodium/potassium ratio by tagging 202 polymorphic simple sequence repeats (SSR) markers. Linkage map of RILs comprised of 21 linkage group covering A, B and D genome for tagging and maped a total of 60 QTLs with major and minor effect. B genome contributed to the highest number of QTLs under salt stress condition. Xgwm70 and Xbarc361 mapped on chromosome 6B was linked with Total chlorophyll, water potential and sodium content. The increasing allele for all these QTLs were advanced from parent Pasban90. Current study showed that Genome B and D had more potentially active genes conferring plant tolerance against salinity stress which may be exploited for marker assisted selection to breed salinity tolerant high yielding wheat varieties.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6933172 | PMC |
http://dx.doi.org/10.1016/j.sjbs.2019.10.003 | DOI Listing |