Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Background: This study aims at gathering evidence about the relation between 30-day mortality and 30-day unplanned readmission and patient and hospital factors. By definition, we refer to 30-day mortality and 30-day unplanned readmission as the number of deaths and non-programmed hospitalizations for any cause within 30 days after the incident heart failure (HF). In particular, the focus is on the role played by hospital-level factors.
Methods: A multi-level logistic model that combines patient- and hospital-level covariates has been developed to better disentangle the role played by the two groups of covariates. Later on, hospital outliers in term of better-than-expected/worst-than-expected performers have been identified by comparing expected cases vs. observed cases. Hospitals performance in terms of 30-day mortality and 30-day unplanned readmission rates have been visualized through the creation of funnel plots. Covariates have been selected coherently to past literature. Data comes from the hospital discharge forms for Heart Failure patients in the Lombardy Region (Northern Italy). Considering incident cases for HF in the timespan 2010-2012, 78,907 records for adult patients from 117 hospitals have been collected after quality checks.
Results: Our results show that 30-day mortality and 30-day unplanned readmissions are explained by hospital-level covariates, paving the way for the design and implementation of evidence-based improvement strategies. While the percentage of surgical DRG (OR = 1.001; CI (1.000-1.002)) and the hospital type of structure (Research hospitals vs. non-research public hospitals (OR = 0.62; CI (0.48-0.80)) and Non-research private hospitals vs. non-research hospitals OR = 0.75; CI (0.63-0.90)) are significant for mortality, the mean length of stay (OR = 0.96; CI (0.95-0.98)) is significant for unplanned readmission, showing that mortality and readmission rates might be improved through different strategies.
Conclusion: Our results confirm that hospital-level covariates do affect quality of care, and that 30-day mortality and 30-day unplanned readmission are affected by different managerial choices. This confirms that hospitals should be accountable for their "added value" to quality of care.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6936032 | PMC |
http://dx.doi.org/10.1186/s12913-019-4818-2 | DOI Listing |