98%
921
2 minutes
20
Background: Read alignment and transcript assembly are the core of RNA-seq analysis for transcript isoform discovery. Nonetheless, current tools are not designed to be scalable for analysis of full-length bulk or single cell RNA-seq (scRNA-seq) data. The previous version of our cloud-based tool Falco only focuses on RNA-seq read counting, but does not allow for more flexible steps such as alignment and read assembly.
Results: The Falco framework can harness the parallel and distributed computing environment in modern cloud platforms to accelerate read alignment and transcript assembly of full-length bulk RNA-seq and scRNA-seq data. There are two new modes in Falco: alignment-only and transcript assembly. In the alignment-only mode, Falco can speed up the alignment process by 2.5-16.4x based on two public scRNA-seq datasets when compared to alignment on a highly optimised standalone computer. Furthermore, it also provides a 10x average speed-up compared to alignment using published cloud-enabled tool for read alignment, Rail-RNA. In the transcript assembly mode, Falco can speed up the transcript assembly process by 1.7-16.5x compared to performing transcript assembly on a highly optimised computer.
Conclusion: Falco is a significantly updated open source big data processing framework that enables scalable and accelerated alignment and assembly of full-length scRNA-seq data on the cloud. The source code can be found at https://github.com/VCCRI/Falco.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6936136 | PMC |
http://dx.doi.org/10.1186/s12864-019-6341-6 | DOI Listing |
Nat Commun
September 2025
CSSB Centre for Structural Systems Biology, Deutsches Elektronen Synchroton DESY, Leibniz Institute of Virology, University of Lübeck, Hamburg, Germany.
In coronavirus (CoV) infection, polyproteins (pp1a/pp1ab) are processed into non-structural proteins (nsps), which largely form the replication/transcription complex (RTC). The polyprotein processing and complex formation is critical and offers potential therapeutic targets. However, the interplay of polyprotein processing and RTC-assembly remains poorly understood.
View Article and Find Full Text PDFEmerg Microbes Infect
September 2025
State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
Enveloped viruses rely on matrix proteins for structural integrity and lifecycle progression. Matrix protein 1 (M1) is the most abundant structural protein of influenza A virus (IAV), playing a multifaceted role in viral uncoating, polymerase activity, vRNA transcription and replication, and assembly and budding. The M1 protein not only interacts with host cells but also regulates viral morphogenesis, thereby influencing viral transmissibility and pathogenicity.
View Article and Find Full Text PDFNucleic Acids Res
September 2025
Ohio State Biochemistry Graduate Program, The Ohio State University, Columbus, OH 43210, United States.
Nucleosome repositioning is essential for establishing nucleosome-depleted regions to initiate transcription. This process has been extensively studied using structural, biochemical, and single-molecule approaches, which require homogeneously positioned nucleosomes. This is often achieved using the Widom 601 sequence, a highly efficient nucleosome-positioning element (NPE) selected for its unusually strong binding to the H3-H4 histone tetramer.
View Article and Find Full Text PDFMicrobiol Spectr
September 2025
Department of Viral Transformation, Leibniz Institute of Virology (LIV), Martinistraße, Hamburg, Germany.
Unlabelled: Human adenoviruses (HAdVs) induce significant reorganization of the nuclear environment, leading to the formation of virus-induced subnuclear structures known as replication compartments (RCs). Within these RCs, viral genome replication, gene expression, and modulation of cellular antiviral responses are tightly coordinated, making them valuable models for studying virus-host interactions. In a recent study, we analyzed the protein composition of HAdV type 5 (HAdV-C5) RCs isolated from infected primary cells at different time points during infection using quantitative proteomics.
View Article and Find Full Text PDFIMA Fungus
August 2025
State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China Institute of Microbiology, Chinese Academy of Sciences Beijing China.
is a widely consumed edible mushroom and the only species currently cultivated on an industrial scale. Despite its economic importance, its trophic strategy and genomic adaptations remain elusive. Here, we presented high-quality, chromosome-level genome assemblies for two sexually compatible monokaryons (PP78 and PP85) of .
View Article and Find Full Text PDF