Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Background: Cutaneous leishmaniasis due to is an important public health problem in the world. Khuzestan Province is one of the main foci of zoonotic cutaneous leishmaniasis (ZCL) in the southwest of Iran. We aimed to predict the spatial distribution of the vector and reservoir(s) of ZCL using decision-making tool and to prepare risk map of the disease using integrative GIS, RS and AHP methods in endemic foci in Shush (plain area) and Khorramshahr (coastal area) counties of Khuzestan Province, southern Iran from Mar 2012 to Jan 2013.
Methods: Thirteen criteria including temperature, relative humidity, rainfall, soil texture, soil organic matter, soil pH, soil moisture, altitude, land cover, land use, underground water depth, distance from river, slope and distance from human dwelling with the highest chance of the presence of the main vector and reservoir of the disease were chosen for this study. Weights of the criteria classes were determined using the Expert choice 11 software. The presence probability maps of the vector and reservoir of the disease were prepared with the combination of AHP method and Arc GIS 9.3.
Results: Based on the maps derived from the AHP model, in Khorramshahr study area, the highest probability of ZCL is predicted in Gharb Karoon rural district. The presence probability of ZCL was high in Hossein Abad and Benmoala rural districts in the northeast of Shush.
Conclusion: Prediction maps of ZCL distribution pattern provide valuable information which can guide policy makers and health authorities to be precise in making appropriate decisions before occurrence of a possible disease outbreak.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6928385 | PMC |