Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The orbital angular momentum of an optical vortex field is found to twist high viscosity donor material to form a micron-scale 'spin jet'. This unique phenomenon manifests the helical trajectory of the optical vortex. Going beyond both the conventional ink jet and laser induced forward mass transfer (LIFT) patterning technologies, it also offers the formation and ejection of a micron-scale 'spin jet' of the donor material even with an ultrahigh viscosity of 4 Pa·s. This optical vortex laser induced forward mass transfer (OV-LIFT) patterning technique will enable the development of next generation printed photonic/electric/spintronic circuits formed of ultrahigh viscosity donor dots containing functional nanoparticles, such as quantum dots, metallic particles and magnetic ferrite particles, with ultrahigh spatial resolution. It can also potentially explore a completely new needleless drug injection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.382288 | DOI Listing |