A deep learning approach for converting prompt gamma images to proton dose distributions: A Monte Carlo simulation study.

Phys Med

Institute of Medical Device and Imaging, College of Medicine, National Taiwan University, No.1, Sec. 1, Jen Ai Rd., Zhongzheng Dist., Taipei City 100, Taiwan. Electronic address:

Published: January 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: In proton therapy, imaging prompt gamma (PG) rays has the potential to verify proton dose (PD) distribution. Despite the fact that there is a strong correlation between the gamma-ray emission and PD, they are still different in terms of the distribution and the Bragg peak (BP) position. In this work, we investigated the feasibility of using a deep learning approach to convert PG images to PD distributions.

Methods: We designed the Monte Carlo simulations using 20 digital brain phantoms irradiated with a 100-MeV proton pencil beam. Each phantom was used to simulate 200 pairs of PG images and PD distributions. A convolutional neural network based on the U-net architecture was trained to predict PD distributions from PG images.

Results: Our simulation results show that the pseudo PD distributions derived from the corresponding PG images agree well with the simulated ground truths. The mean of the BP position errors from each phantom was less than 0.4 mm. We also found that 2000 pairs of PG images and dose distributions would be sufficient to train the U-net. Moreover, the trained network could be deployed on the unseen data (i.e. different beam sizes, proton energies and real patient CT data).

Conclusions: Our simulation study has shown the feasibility of predicting PD distributions from PG images using a deep learning approach, but the reliable prediction of PD distributions requires high-quality PG images. Image-degrading factors such as low counts and limited spatial resolution need to be considered in order to obtain high-quality PG images.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmp.2019.12.006DOI Listing

Publication Analysis

Top Keywords

deep learning
12
learning approach
12
prompt gamma
8
images
8
proton dose
8
dose distributions
8
monte carlo
8
simulation study
8
pairs images
8
high-quality images
8

Similar Publications

Neuroimaging Data Informed Mood and Psychosis Diagnosis Using an Ensemble Deep Multimodal Framework.

Hum Brain Mapp

September 2025

Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, Georgia, USA.

Investigating neuroimaging data to identify brain-based markers of mental illnesses has gained significant attention. Nevertheless, these endeavors encounter challenges arising from a reliance on symptoms and self-report assessments in making an initial diagnosis. The absence of biological data to delineate nosological categories hinders the provision of additional neurobiological insights into these disorders.

View Article and Find Full Text PDF

A robust deep learning-driven framework for detecting Parkinson's disease using EEG.

Comput Methods Biomech Biomed Engin

September 2025

Institute of Radio Physics and Electronics, University of Calcutta, Kolkata, India.

Parkinson's disease (PD) is a neurodegenerative condition that impairs motor functions. Accurate and early diagnosis is essential for enhancing well-being and ensuring effective treatment. This study proposes a deep learning-based approach for PD detection using EEG signals.

View Article and Find Full Text PDF

Introduction: Pulmonary embolism (PE) is a life-threatening condition with well-defined management strategies; however, the presence of a clot-in-transit (CIT)-a mobile thrombus within the right heart-introduces a uniquely high-risk scenario associated with a significantly elevated mortality rate. While several therapeutic approaches are available-including anticoagulation, systemic thrombolysis, surgical embolectomy, and catheter-directed therapies-there is no established consensus on a superior treatment modality. Catheter-based mechanical thrombectomy has emerged as a promising, minimally invasive alternative that mitigates the bleeding risks of systemic thrombolysis and the invasiveness of surgery.

View Article and Find Full Text PDF

Artificial intelligence (AI) is a technique or tool to simulate or emulate human "intelligence." Precision medicine or precision histology refers to the subpopulation-tailored diagnosis, therapeutics, and management of diseases with its sociocultural, behavioral, genomic, transcriptomic, and pharmaco-omic implications. The modern decade experiences a quantum leap in AI-based models in various aspects of daily routines including practice of precision medicine and histology.

View Article and Find Full Text PDF

Background: In clinical practice, digital subtraction angiography (DSA) often suffers from misregistration artifact resulting from voluntary, respiratory, and cardiac motion during acquisition. Most prior efforts to register the background DSA mask to subsequent postcontrast images rely on key point registration using iterative optimization, which has limited real-time application.

Purpose: Leveraging state-of-the-art, unsupervised deep learning, we aim to develop a fast, deformable registration model to substantially reduce DSA misregistration in craniocervical angiography without compromising spatial resolution or introducing new artifacts.

View Article and Find Full Text PDF