98%
921
2 minutes
20
Pot-culture experiments were carried out in Shanghai to screen crop varieties with low bioaccumulation properties with respect to cadmium (Cd). Eight common crops, such as green pepper, cucumber, cowpea, spinach, cauliflower, tomatoes, rice, and wheat, were planted in contaminated soil with different Cd concentrations of 0.23, 0.6, 1.2, 1.8, 2.4, and 3.0 mg·kg to investigate the effects on biomass, Cd accumulation characteristics, and edible risk safety. The results indicated that:① With the increase in soil Cd content, the aboveground biomass of crops increased firstly and then decreased. The different crop types had different tolerance to Cd, with green pepper showed the strongest tolerance and spinach and tomato showed the least tolerance. ② The bioaccumulation factor of Cd in the edible parts of eight crops ranged in order of wheat > spinach > rice > green pepper > cauliflower > tomato > cucumber > cowpea. ③ Total Cd content in soil was significantly correlated with Cd content in the crops (<0.05), and the order of the correlation coefficients was spinach > wheat > tomato > cucumber > green pepper > rice > cauliflower > cowpea. ④ The risk threshold value of Cd in soil based on the edible safety of different crops ranged in order of cowpea > cucumber > cauliflower > green pepper > tomato > rice > spinach > wheat. Cucumber, cowpea, and cauliflower were selected as the low-Cd-accumulating varieties according to their tolerance to soil Cd, bioaccumulation capacity, and edible risk threshold values.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13227/j.hjkx.201811059 | DOI Listing |
Microbiol Resour Announc
September 2025
Netherlands Institute for Vectors, Invasive plants and Plant health (NIVIP), National Plant Protection Organization (NPPO), Netherlands Food and Consumer Product Safety Authority (NVWA), Wageningen, the Netherlands.
We report two complete genome sequences of a putative novel orthotospovirus species in pepper fruits ( sp.) from South Africa, provisionally named (Capsicum orthotospovirus 1; CaV1). Its nucleocapsid protein shows less than 88% amino acid identity with other orthotospoviruses.
View Article and Find Full Text PDFJ Sci Food Agric
September 2025
Department of Soil and Water Conservation and Organic Wastes Management, CEBAS-CSIC, Campus Universitario de Espinardo - 25, Murcia, Spain.
Background: Sweet pepper (Capsicum annuum) is of considerable socio-economic importance and is among the most widely cultivated vegetables worldwide, occupying more than 20 000 km. Light-emitting diodes (LEDs), applied in continuous or pulsed modes, can increase yield and improve the phytochemical composition in indoor production systems. However, effective methodologies to define the optimal LED spectrum for maximizing growth across the full cultivation cycle - from seedling to fruit production - under controlled photoperiod conditions (14 h light/10 h dark) with pulsed lighting are lacking.
View Article and Find Full Text PDFAnim Nutr
September 2025
Center of Applied Research in Biosystems (CARB-CIAB), Biosystems Engineering Group, School of Engineering Campus Amazcala, Autonomous University of Querétaro, Querétaro 76260, Mexico.
Population growth and income increase have promoted a greater consumption of animal-based food. To increase the yield of livestock animals, antibiotic growth promoters (AGPs) have been provided at sub-therapeutic doses in water and feed for production animals. Unfortunately, the misuse of antibiotics has been associated with antimicrobial resistance (AMR), resulting in their ban as animal growth promoters in different countries.
View Article and Find Full Text PDFCureus
August 2025
Bioresource Engineering, Sejong University, Seoul, KOR.
Background Type 2 diabetes (T2D) is a complex metabolic disorder characterized by impaired glucose regulation and insulin resistance and frequently accompanied by obesity and dyslipidemia. The search for novel therapeutic agents to manage these metabolic parameters remains ongoing. Pepper fruit (cv.
View Article and Find Full Text PDFFront Plant Sci
August 2025
Laboratorio de Bioinformática y Redes Complejas, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (IPN), Departamento de Ingeniería Genética, Unidad Irapuato, Irapuato, Guanajuato, Mexico.
Tomato brown rugose fruit virus (ToBRFV) poses a global threat to tomato and pepper production due to its high transmissibility and adaptability. Understanding its genomic features and transmission mechanisms is critical for effective disease management. We characterized the genome and biological properties of a ToBRFV isolate from Mexico.
View Article and Find Full Text PDF