A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Toll-like Receptor Signaling Rewires Macrophage Metabolism and Promotes Histone Acetylation via ATP-Citrate Lyase. | LitMetric

Toll-like Receptor Signaling Rewires Macrophage Metabolism and Promotes Histone Acetylation via ATP-Citrate Lyase.

Immunity

Institute of Innate Immunity, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany; German Center for Neurodegenerative Diseases, 53127 Bonn, Germany; Department of Infectious Diseases & Immunology, UMass Medical School, Worcester, MA 01605, USA; Centre of Molecular Inflammation Researc

Published: December 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Toll-like receptor (TLR) activation induces inflammatory responses in macrophages by activating temporally defined transcriptional cascades. Whether concurrent changes in the cellular metabolism that occur upon TLR activation influence the quality of the transcriptional responses remains unknown. Here, we investigated how macrophages adopt their metabolism early after activation to regulate TLR-inducible gene induction. Shortly after TLR4 activation, macrophages increased glycolysis and tricarboxylic acid (TCA) cycle volume. Metabolic tracing studies revealed that TLR signaling redirected metabolic fluxes to generate acetyl-Coenzyme A (CoA) from glucose resulting in augmented histone acetylation. Signaling through the adaptor proteins MyD88 and TRIF resulted in activation of ATP-citrate lyase, which in turn facilitated the induction of distinct LPS-inducible gene sets. We postulate that metabolic licensing of histone acetylation provides another layer of control that serves to fine-tune transcriptional responses downstream of TLR activation. Our work highlights the potential of targeting the metabolic-epigenetic axis in inflammatory settings.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.immuni.2019.11.009DOI Listing

Publication Analysis

Top Keywords

histone acetylation
12
tlr activation
12
toll-like receptor
8
atp-citrate lyase
8
transcriptional responses
8
activation
6
receptor signaling
4
signaling rewires
4
rewires macrophage
4
macrophage metabolism
4

Similar Publications