A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Major Role of Voluminosity in the Compressibility and Sol-Gel Transition of Casein Micelle Dispersions Concentrated at 7 °C and 20 °C. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The objective of this work is to bring new information about the influence of temperatures (7 °C and 20 °C) on the equation of state and sol-gel transition behavior of casein micelle dispersions. Casein micelle dispersions have been concentrated and equilibrated at different osmotic pressures using equilibrium dialysis at 7 °C and 20 °C. The osmotic stress technique measured the osmotic pressures of the dispersions over a wide range of concentrations. Rheological properties of concentrated dispersions were then characterized, respectively at 7 °C and at 20 °C. The essential result is that casein micelle dispersions are less compressible at 7 °C than at 20 °C and that concentration of sol-gel transition is lower at 7 °C than at 20 °C, with compressibility defined as the inverse to the resistance to the compression, and that is proportional to the cost to remove water from structure. From our interpretations, these two features were fully consistent with a release of soluble β-casein and nanoclusters CaP and an increased casein micelle hydration and apparent voluminosity at 7 °C as compared with 20 °C.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6963684PMC
http://dx.doi.org/10.3390/foods8120652DOI Listing

Publication Analysis

Top Keywords

°c °c
24
casein micelle
20
micelle dispersions
16
°c
14
sol-gel transition
12
dispersions concentrated
8
osmotic pressures
8
dispersions
6
casein
5
micelle
5

Similar Publications