Conversion of DNA Sequences: From a Transposable Element to a Tandem Repeat or to a Gene.

Genes (Basel)

MED-Mediterranean Institute for Agriculture, Environment and Development, University of Évora, 7002-554 Évora, Portugal.

Published: December 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Eukaryotic genomes are rich in repetitive DNA sequences grouped in two classes regarding their genomic organization: tandem repeats and dispersed repeats. In tandem repeats, copies of a short DNA sequence are positioned one after another within the genome, while in dispersed repeats, these copies are randomly distributed. In this review we provide evidence that both tandem and dispersed repeats can have a similar organization, which leads us to suggest an update to their classification based on the sequence features, concretely regarding the presence or absence of retrotransposons/transposon specific domains. In addition, we analyze several studies that show that a repetitive element can be remodeled into repetitive non-coding or coding sequences, suggesting (1) an evolutionary relationship among DNA sequences, and (2) that the evolution of the genomes involved frequent repetitive sequence reshuffling, a process that we have designated as a "DNA remodeling mechanism". The alternative classification of the repetitive DNA sequences here proposed will provide a novel theoretical framework that recognizes the importance of DNA remodeling for the evolution and plasticity of eukaryotic genomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6947457PMC
http://dx.doi.org/10.3390/genes10121014DOI Listing

Publication Analysis

Top Keywords

dna sequences
16
dispersed repeats
12
eukaryotic genomes
8
repetitive dna
8
tandem repeats
8
repeats copies
8
sequences
5
repetitive
5
dna
5
repeats
5

Similar Publications

In most eubacteria the initiator protein DnaA triggers chromosomal replication by forming an initiation complex at the origin of replication and also functions as a transcriptional regulator, coordinating gene expression with cell cycle progression. While DnaA-regulated genes are relatively well characterized in exponentially growing cells, its role in gene regulation during stationary phase remains insufficiently explored. Here, using an aquatic bacterium Caulobacter crescentus as a model, we show that C.

View Article and Find Full Text PDF

Forensic applications of compound genetic markers: trends and future directions.

Sci Justice

September 2025

School of Life Sciences, University of KwaZulu-Natal, Private Bag X54001, Westville, Durban 4000, South Africa. Electronic address:

A compound marker integrates two or more genetic markers into a single assay. The application of compound markers enhances the predictive accuracy of genetic testing by leveraging the strengths of different genetic variations while mitigating the limitations of individual markers. Compound markers include SNP-SNPs, SNP-STRs, DIP-SNPs, DIP-STRs, Multi-In/Dels, CpG-SNPs, CpG-STRs/CpG-In/Del, and Methylation-Microhaplotypes.

View Article and Find Full Text PDF

A simple protocol to improve touch DNA analysis using direct STR amplification.

Sci Justice

September 2025

Department of Chemistry and Forensic Science, Eastern Kentucky University, 521 Lancaster Avenue, Richmond, KY 40475, United States. Electronic address:

Traditionally, when processing DNA samples, a multiple-step procedure is followed; after a sample has been collected, DNA is then extracted and quantified before a profile is generated. During the process, valuable DNA can be lost and/or consumed. When processing reference samples, where DNA is usually in abundance, DNA loss may not be a concern for the analysts.

View Article and Find Full Text PDF

Discriminatory power of the Precision ID GlobalFiler™ NGS STR panel v2 in monozygotic twins for forensic applications.

Sci Justice

September 2025

Departamento de Medicina Legal, Bioética, Medicina do Trabalho e Medicina Física e Reabilitação, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil. Electronic address:

Short Tandem Repeats (STRs) are the standard technique used in forensic genetics for individual identification due to their high polymorphism and robustness. Although Capillary Electrophoresis (CE) enables the analysis of many STRs, Next-Generation Sequencing (NGS) offers enhanced resolution and the ability to detect STRs' isoalleles and their flanking regions, enhancing the discrimination power of this analysis. Despite the fact that STR kits for NGS are well standardized for evaluating forensic samples, there is no data on their effectiveness in differentiating monozygotic (MZ) twins, which are indistinguishable by CE.

View Article and Find Full Text PDF

Supercoiled (Sc) circular DNA, such as plasmids, are essential in molecular biology and hold strong therapeutic potential. However, they are typically produced in Escherichia coli, resulting in bacterial methylations, unnecessary sequences, and contaminants that hinder certain applications including clinical uses. These limitations could be avoided by synthesizing plasmids entirely in vitro, but synthesizing high-purity Sc circular DNA biochemically remains a significant technical challenge.

View Article and Find Full Text PDF