Identification, characterization and mRNA transcript abundance profiles of estrogen related receptor (ERR) in Sepiella japonica imply its possible involvement in female reproduction.

Anim Reprod Sci

National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, College of Marine Sciences and Technology, Zhejiang Ocean University, No. 1, South Haida Road, Dinghai District, Zhoushan, China. Electronic address:

Published: December 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Estrogen related receptors (ERRs) are widely detected in vertebrates and apparently have functions in reproduction. The functions of ERRs in reproduction of invertebrates, especially in mollusk cephalopods, are largely unknown. In the present study, An homologue of vertebrate ERR gene was first cloned from female Sepiella japonica, an important Cephalopod species in coastal water of China. Results indicate the S. japonica ERR (sjERR) gene is comprised of 1513 nucleotides, containing a 1389 bp open reading frame, which encode for 463 amino acid (aa) residues. The deduced sjERR protein possessed six typical nuclear receptors (NR) domains (A-F), with a DNA-binding domain (DBD) and a highly conserved ligand-binding domain (LBD), compared to the other molluscan ERRs. Results from tissue analyses indicated that sjERR mRNA transcript abundance was in largest amounts in tissues of the brain, liver, ovary that are possibly involved in reproduction. The sjERR mRNA transcript abundance was temporally regulated during the different sexual maturation phases of female S. japonica and was affected by in vivo administrations of vertebrate steroid estradiol-17β (E2). An in vivo knockdown of sjERR gene expression resulted in a marked down-regulation in expression of genes involved in ovarian development, such as Vitellogenin, CDK1, and Cyclin B, indicating there is a possible involvement of sjERR in reproduction. Both fusion protein transient transfections and immunohistochemical analyses indicated a presence of sjERR in the nucleus, implying a possible mechanism of action of the sjERR in the nucleus through activation of specific gene transcriptions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.anireprosci.2019.106231DOI Listing

Publication Analysis

Top Keywords

mrna transcript
12
transcript abundance
12
sepiella japonica
8
sjerr
8
sjerr gene
8
analyses indicated
8
sjerr mrna
8
sjerr nucleus
8
reproduction
5
identification characterization
4

Similar Publications

Background: Alzheimer's disease (AD) patients and animal models exhibit an altered gut microbiome that is associated with pathological changes in the brain. Intestinal miRNA enters bacteria and regulates bacterial metabolism and proliferation. This study aimed to investigate whether the manipulation of miRNA could alter the gut microbiome and AD pathologies.

View Article and Find Full Text PDF

Several genes in the mitochondria of angiosperms are interrupted by introns, and their posttranscriptional excision involves numerous nucleus-encoded auxiliary factors. Most of these factors are of eukaryotic origin, among them members of the pentatricopeptide-repeat (PPR) family of RNA-binding proteins. This family divides into the PLS and P classes, with PLS-class proteins typically participating in C-to-U mRNA editing and P-class members contributing to transcript stabilization and intron splicing.

View Article and Find Full Text PDF

E3 ubiquitin ligases regulate the cellular proteome proteasome-dependent protein degradation; however, there exist limited studies outlining their non-canonical functions. RNA-binding ubiquitin ligases (RBULs) represent a subset of E3 ligases that harbour RNA-binding domains, making them uniquely positioned to function as both RNA-binding proteins and E3 ligases. Our initial microarray screen for E3 ligases from mouse cortical neural progenitor cells identified MEX3B, a known RNA-binding ubiquitin ligase, to be differentially expressed.

View Article and Find Full Text PDF

RNA cap formation on RNA polymerase II transcripts is regulated by cellular signalling pathways during development and differentiation, adaptive and innate immune responses, during the cell cycle and in response to oncogene deregulation. Here, we discuss how the RNA cap methyltransferase, RNA guanine-7 methyltransferase (RNMT), functions to complete the 7-methyl-guanosine or m7G cap. The mechanisms by which RNMT is regulated by signalling pathways, co-factors and other enzymes are explored.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are critical regulators of gene expression in cancer biology, yet their spatial dynamics within tumor microenvironments (TMEs) remain underexplored due to technical limitations in current spatial transcriptomics (ST) technologies. To address this gap, we present STmiR, a novel XGBoost-based framework for spatially resolved miRNA activity prediction. STmiR integrates bulk RNA-seq data (TCGA and CCLE) with spatial transcriptomics profiles to model nonlinear miRNA-mRNA interactions, achieving high predictive accuracy (Spearman's ρ > 0.

View Article and Find Full Text PDF