98%
921
2 minutes
20
Estrogen related receptors (ERRs) are widely detected in vertebrates and apparently have functions in reproduction. The functions of ERRs in reproduction of invertebrates, especially in mollusk cephalopods, are largely unknown. In the present study, An homologue of vertebrate ERR gene was first cloned from female Sepiella japonica, an important Cephalopod species in coastal water of China. Results indicate the S. japonica ERR (sjERR) gene is comprised of 1513 nucleotides, containing a 1389 bp open reading frame, which encode for 463 amino acid (aa) residues. The deduced sjERR protein possessed six typical nuclear receptors (NR) domains (A-F), with a DNA-binding domain (DBD) and a highly conserved ligand-binding domain (LBD), compared to the other molluscan ERRs. Results from tissue analyses indicated that sjERR mRNA transcript abundance was in largest amounts in tissues of the brain, liver, ovary that are possibly involved in reproduction. The sjERR mRNA transcript abundance was temporally regulated during the different sexual maturation phases of female S. japonica and was affected by in vivo administrations of vertebrate steroid estradiol-17β (E2). An in vivo knockdown of sjERR gene expression resulted in a marked down-regulation in expression of genes involved in ovarian development, such as Vitellogenin, CDK1, and Cyclin B, indicating there is a possible involvement of sjERR in reproduction. Both fusion protein transient transfections and immunohistochemical analyses indicated a presence of sjERR in the nucleus, implying a possible mechanism of action of the sjERR in the nucleus through activation of specific gene transcriptions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.anireprosci.2019.106231 | DOI Listing |
Alzheimers Res Ther
September 2025
Department of Neurology, Saarland University, Kirrberger Straße, 66421, Homburg/Saar, Germany.
Background: Alzheimer's disease (AD) patients and animal models exhibit an altered gut microbiome that is associated with pathological changes in the brain. Intestinal miRNA enters bacteria and regulates bacterial metabolism and proliferation. This study aimed to investigate whether the manipulation of miRNA could alter the gut microbiome and AD pathologies.
View Article and Find Full Text PDFPhysiol Plant
September 2025
Department of Plant Physiology, Institute of Biology, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany.
Several genes in the mitochondria of angiosperms are interrupted by introns, and their posttranscriptional excision involves numerous nucleus-encoded auxiliary factors. Most of these factors are of eukaryotic origin, among them members of the pentatricopeptide-repeat (PPR) family of RNA-binding proteins. This family divides into the PLS and P classes, with PLS-class proteins typically participating in C-to-U mRNA editing and P-class members contributing to transcript stabilization and intron splicing.
View Article and Find Full Text PDFOpen Biol
September 2025
National Brain Research Centre, Manesar, Haryana, India.
E3 ubiquitin ligases regulate the cellular proteome proteasome-dependent protein degradation; however, there exist limited studies outlining their non-canonical functions. RNA-binding ubiquitin ligases (RBULs) represent a subset of E3 ligases that harbour RNA-binding domains, making them uniquely positioned to function as both RNA-binding proteins and E3 ligases. Our initial microarray screen for E3 ligases from mouse cortical neural progenitor cells identified MEX3B, a known RNA-binding ubiquitin ligase, to be differentially expressed.
View Article and Find Full Text PDFBiochem J
September 2025
Cancer Research UK Scotland Institute, Glasgow, G61 1BD, U.K.
RNA cap formation on RNA polymerase II transcripts is regulated by cellular signalling pathways during development and differentiation, adaptive and innate immune responses, during the cell cycle and in response to oncogene deregulation. Here, we discuss how the RNA cap methyltransferase, RNA guanine-7 methyltransferase (RNMT), functions to complete the 7-methyl-guanosine or m7G cap. The mechanisms by which RNMT is regulated by signalling pathways, co-factors and other enzymes are explored.
View Article and Find Full Text PDFPLoS One
September 2025
Institute of Computational Science and Technology, Guangzhou University, Guangzhou, China.
MicroRNAs (miRNAs) are critical regulators of gene expression in cancer biology, yet their spatial dynamics within tumor microenvironments (TMEs) remain underexplored due to technical limitations in current spatial transcriptomics (ST) technologies. To address this gap, we present STmiR, a novel XGBoost-based framework for spatially resolved miRNA activity prediction. STmiR integrates bulk RNA-seq data (TCGA and CCLE) with spatial transcriptomics profiles to model nonlinear miRNA-mRNA interactions, achieving high predictive accuracy (Spearman's ρ > 0.
View Article and Find Full Text PDF