Characterizing the interplay between gene nucleotide composition bias and splicing.

Genome Biol

Laboratory of Biology and Modelling of the Cell, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, 46 Allée d'Italie Site Jacques Monod, F-69007, Lyon, France.

Published: November 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Nucleotide composition bias plays an important role in the 1D and 3D organization of the human genome. Here, we investigate the potential interplay between nucleotide composition bias and the regulation of exon recognition during splicing.

Results: By analyzing dozens of RNA-seq datasets, we identify two groups of splicing factors that activate either about 3200 GC-rich exons or about 4000 AT-rich exons. We show that splicing factor-dependent GC-rich exons have predicted RNA secondary structures at 5' ss and are dependent on U1 snRNP-associated proteins. In contrast, splicing factor-dependent AT-rich exons have a large number of decoy branch points, SF1- or U2AF2-binding sites and are dependent on U2 snRNP-associated proteins. Nucleotide composition bias also influences local chromatin organization, with consequences for exon recognition during splicing. Interestingly, the GC content of exons correlates with that of their hosting genes, isochores, and topologically associated domains.

Conclusions: We propose that regional nucleotide composition bias over several dozens of kilobase pairs leaves a local footprint at the exon level and induces constraints during splicing that can be alleviated by local chromatin organization at the DNA level and recruitment of specific splicing factors at the RNA level. Therefore, nucleotide composition bias establishes a direct link between genome organization and local regulatory processes, like alternative splicing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6883713PMC
http://dx.doi.org/10.1186/s13059-019-1869-yDOI Listing

Publication Analysis

Top Keywords

nucleotide composition
24
composition bias
24
splicing
8
exon recognition
8
splicing factors
8
gc-rich exons
8
at-rich exons
8
splicing factor-dependent
8
dependent snrnp-associated
8
snrnp-associated proteins
8

Similar Publications

sp. nov., a novel halotolerant, flexirubin-type pigment-producing bacterium of the family .

Int J Syst Evol Microbiol

September 2025

Second Institute of Oceanography, Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources, Hangzhou 310018, PR China.

A Gram-staining-negative, non-motile, aerobic, rod-shaped bacterium, designated 14752, was isolated from a saline lake in Xinjiang Uygur Autonomous Region, China. The strain was subjected to a taxonomic study using a polyphasic approach. Strain 14752 was able to grow at 4-40 ℃ (optimum 28 ℃), pH 6.

View Article and Find Full Text PDF

Background: Labeo fimbriatus (Bloch, 1795) is a medium-sized South Asian minor carp with ecological significance and emerging aquaculture potential, particularly in polyculture systems with Indian major carps. Despite its wide distribution, it remains underrepresented in phylogenetic studies, and limited genomic resources are available. Here, we report the complete mitochondrial genome sequence of L.

View Article and Find Full Text PDF

Niabella insulamsoli sp. nov., Isolated From Soil and Showing Potential Cosmetic Functions with Flexirubin Extract.

Curr Microbiol

September 2025

Microbiology Laboratory, Department of Life Science, Kyonggi University, Suwon, Gyeonggi-Do, Republic of Korea.

A yellow-pigmented, non-motile, rod-shaped, and Gram-stain-negative bacterium was isolated from the soil of Yeongheung Island, Korea. The novel isolate, strain N803, was strictly aerobic, grew optimally at 30-35 °C, at pH 6.5, and in the presence of 0-2% NaCl.

View Article and Find Full Text PDF

Currently, there is an increasing use of whole-genome sequencing (WGS) studies to investigate the molecular taxonomy, metabolic properties, enzyme capabilities, and bioactive substances of lactic acid bacteria (LAB) species. In this study, the genome of strain Pediococcus pentosaceus BBS1 was sequenced using the Illumina HiSeq. 2500 platform to determine its classification, annotate its main features, and evaluate its safety characteristics.

View Article and Find Full Text PDF

Elucidating the impact of salt concentration on volatile flavor profiles and microbial dynamics in fermented cockle paste using GC-IMS and high-throughput 16S rDNA sequencing.

Food Res Int

November 2025

SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China. Electronic address:

In the present study, cockles were utilized as the raw material to investigate how different salt concentrations and fermentation periods influence the physicochemical indices, microbial community shifts, and volatile flavor components of cockle paste. Through the analysis of volatile flavor substances via GC-IMS, a total of 77 volatile flavor compounds were identified, among which aldehydes accounted for the largest proportion. High-throughput 16S rDNA sequencing was applied to decode the composition of dominant microbiota in the cockle paste samples.

View Article and Find Full Text PDF