Tight Junctions in Cell Proliferation.

Int J Mol Sci

Department of Ophthalmology and Visual Sciences, University of Michigan, Kellogg Eye Center, Ann Arbor, MI 48105, USA.

Published: November 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Tight junction (TJ) proteins form a continuous intercellular network creating a barrier with selective regulation of water, ion, and solutes across endothelial, epithelial, and glial tissues. TJ proteins include the claudin family that confers barrier properties, members of the MARVEL family that contribute to barrier regulation, and JAM molecules, which regulate junction organization and diapedesis. In addition, the membrane-associated proteins such as MAGUK family members, i.e., zonula occludens, form the scaffold linking the transmembrane proteins to both cell signaling molecules and the cytoskeleton. Most studies of TJ have focused on the contribution to cell-cell adhesion and tissue barrier properties. However, recent studies reveal that, similar to adherens junction proteins, TJ proteins contribute to the control of cell proliferation. In this review, we will summarize and discuss the specific role of TJ proteins in the control of epithelial and endothelial cell proliferation. In some cases, the TJ proteins act as a reservoir of critical cell cycle modulators, by binding and regulating their nuclear access, while in other cases, junctional proteins are located at cellular organelles, regulating transcription and proliferation. Collectively, these studies reveal that TJ proteins contribute to the control of cell proliferation and differentiation required for forming and maintaining a tissue barrier.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6928848PMC
http://dx.doi.org/10.3390/ijms20235972DOI Listing

Publication Analysis

Top Keywords

cell proliferation
16
proteins
10
junction proteins
8
barrier properties
8
tissue barrier
8
studies reveal
8
proteins contribute
8
contribute control
8
control cell
8
cell
6

Similar Publications

NAD Metabolism Regulates Proliferation of Macrophages in Atherosclerosis.

Arterioscler Thromb Vasc Biol

September 2025

Department of Medicine/Division of Cardiology, University of California Los Angeles. (S.S., C.R.S., L.F., M.P., C.P., Z.Z., J.J.M., R.C.D., D.S., A.J.L.).

Background: In genetic studies with the Hybrid Mouse Diversity Panel, we previously identified a chromosome 9 locus for atherosclerosis. We now identify NNMT (nicotinamide -methyltransferase), an enzyme that degrades nicotinamide, as the causal gene in the locus and show that the underlying mechanism involves salvage of nicotinamide to nicotinamide adenine dinucleotide (NAD).

Methods: Gain/loss of function studies in macrophages were performed to examine the role of NAD levels in macrophage proliferation and apoptosis in atherosclerosis.

View Article and Find Full Text PDF

The mechanical properties of the polymeric substrate or matrix where a cell grows affect cell behavior. Most studies have focused on relating elastic properties of polymeric substrates, which are time-independent, to cell behaviors. However, polymeric substrates and biological systems exhibit a time-dependent, often viscoelastic, mechanical response.

View Article and Find Full Text PDF

The Transcription Factor MYB8 Positively Regulates Flavonoid Biosynthesis of Scutellaria baicalensis in Response to Drought Stress.

Plant Cell Environ

September 2025

National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of the Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China.

Drought stress dynamically reprograms specialised metabolism in medicinal plants. However, the transcriptional regulatory modules governing stress-adaptive metabolite synthesis remain poorly characterised. Here, we identified SbMYB8 as a drought-responsive transcription factor showing nuclear localisation and dose-dependent induction under drought in Scutellaria baicalensis.

View Article and Find Full Text PDF

Mitochondrial ClpX Inhibition Induces Ferroptosis and Blocks Pancreatic Cancer Cell Proliferation.

Chembiochem

September 2025

School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China.

The ATPase caseinolytic protease X (ClpX), forming the ClpXP complex with caseinolytic protease P (ClpP), is essential for mitochondrial protein homeostasis. While ClpP targeting is a recognized anticancer strategy, the role of ClpX in cancer remains underexplored. In pancreatic ductal adenocarcinoma (PDAC), elevated CLPX expression correlates with poor prognosis, suggesting its oncogenic function.

View Article and Find Full Text PDF

Through applying the hybridization technique, new coumarin derivatives (2-17) were prepared with substitution at coumarin C-3 utilizing various heterocyclic derivatives, aiming to afford multi-target carbonic anhydrases (CAs) IX/XII and topoisomerase II (Topo II) inhibitors with potent antiproliferative activity. Eight different cell lines were used to evaluate the growth inhibition percentages (GI%) of cancer cells determined by coumarin analogues 1-17. Analogues 16 and 17 had the most substantial cytotoxic effects, achieving mean GI% of 86.

View Article and Find Full Text PDF