A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Evaluation of pull-off strength and seating displacement of sleeved ceramic revision heads in modular hip arthroplasty. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Corrosion in revision total hip arthroplasty can be mitigated using a ceramic head on a well-fixed in situ stem, but concerns of their early failure because of any surface defects on in situ stem necessitates the use of a titanium sleeve, which furnishes a factory-finish surface. These sleeves are manufactured in different sizes allowing neck-length adjustment. The strength of the taper junction of non-sleeved primary heads is well-investigated, but the influence of an interposed titanium sleeve on achieving a secure taper lock is unclear. Therefore, this study aimed to investigate the pull-off strength and seating displacement of revision ceramic heads and titanium taper sleeves. Two different head diameters and two different taper adapter sleeve offset lengths were mated with trunnions at two different impaction forces. The seating displacement and pull-off force was recorded for each specimen. Profilometry of the grooved outer surfaces of the sleeve and trunnion was done before and after testing to analyze the change in surface roughness. The influence of head diameter, sleeve offset, and impaction force on seating displacement and pull-off force was analyzed using analysis of covariance. Pull-off forces for 6 kN assembly force were approximately three times those for 2 kN. The head diameter did not have a significant effect on the measured parameters. Compared with short offset length sleeves, extra-long increased seating displacement by 31% and reduced pull-off forces by 15%. While sleeves of different offset lengths permit control of neck length, surgeons must be careful of the impact of this choice on the stability of implant. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:1523-1528, 2020.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jor.24536DOI Listing

Publication Analysis

Top Keywords

seating displacement
20
pull-off strength
8
strength seating
8
hip arthroplasty
8
situ stem
8
titanium sleeve
8
sleeve offset
8
offset lengths
8
displacement pull-off
8
pull-off force
8

Similar Publications