Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The alarming rate of global pollinator decline has made habitat restoration for pollinators a conservation priority. At the same time, empirical and theoretical studies on plant-pollinator networks have demonstrated that plant species are not equally important for pollinator community persistence and restoration. However, the scarcity of comprehensive datasets on plant-pollinator networks in tropical ecosystems constrains their practical value for pollinator restoration. As closely-related species often share traits that determine ecological interactions, phylogenetic relationships could inform restoration programs in data-scarce regions. Here, we use quantitative bee-plant networks from Brazilian ecosystems to test if priority plant species for different restoration criteria (bee species richness and visitation rates) can be identified using interaction networks; if phylogenetic relationships alone can guide plant species selection; and how restoration criteria influence restored network properties and function. We found plant species that maximised the benefits of habitat restoration for bees (i.e., generalists and those with distinct flower-visitor species) were clustered in a small number of phylogenetically-diverse plant families, and that prioritising the recovery of bee visitation rates improved both stability and function of restored plant-pollinator networks. Our approach can help guide restoration of pollinator communities, even where information on local ecosystems is limited.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6874649 | PMC |
http://dx.doi.org/10.1038/s41598-019-53829-4 | DOI Listing |