A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Three site molecular orbital controlled single-molecule rectifiers based on perpendicularly linked porphyrin-imide dyads. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The original single-molecule rectifier proposed by Aviram and Ratner is based on a donor-σ-acceptor structure, in which σ functions as the insulator to disconnect the π electronic systems of the two parts. However, there have been no reports on experimentally demonstrated highly efficient single-molecule rectifiers based on this mechanism. In this paper, we demonstrate single-molecule rectifiers with perpendicularly connected metal porphyrin-imide dyads. Our proposed molecule rectifiers use hydroxyl groups at both ends as weak anchoring groups. Measurements of the single-molecule current-voltage characteristics of these molecules clearly show that the rectification ratio reached a high value of 14 on average. Moreover, the ratio could be tuned by changing the central metal in the porphyrin core. All of these features can be explained by the energy-level shift of the molecular orbital using a model with three electronic parts.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9nr07105aDOI Listing

Publication Analysis

Top Keywords

single-molecule rectifiers
12
molecular orbital
8
rectifiers based
8
porphyrin-imide dyads
8
single-molecule
5
three site
4
site molecular
4
orbital controlled
4
controlled single-molecule
4
rectifiers
4

Similar Publications