98%
921
2 minutes
20
Background Diabetes mellitus is a chronic metabolic disorder that undesirably affects both central and peripheral nervous systems through the apoptosis of neurons. Insulin and insulin-like growth factors (IGFs) inhibit apoptosis of oligodendrocytes. The objective of this study was to determine whether oral insulin in the form of nanoparticles may have similar effects to injectable insulin in increasing the gene expression of IGF1 and IGF2. Methods Insulin-loaded trimethyl chitosan nanoparticles were prepared using the polyelectrolyte complex method and characterized for size, polydispersity index, zeta potential, drug loading, and entrapment efficiency. An in vivo study was performed in different groups of male Wistar rats with diabetes mellitus type 1 treated with insulin-loaded trimethyl chitosan nanoparticles and subcutaneous injection of trade insulin (neutral protamine Hagedorn). The hippocampus of rats were studied for the expression of IGF1 and IGF2 genes by using real-time PCR, and the fold changes in gene expression were evaluated using the 2-ΔΔCt method. Results The expression of IGF1 and IGF2 genes in the groups treated with nano-insulin and injected insulin were significantly higher than that in the diabetic control group (p<0.001) and meaningfully lower than that in the healthy control group. However, there was no significant difference to the treated groups. Conclusion Our findings suggest that future research might provide a new formulation of drugs for treating type 1 diabetes, in the form of oral insulin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1515/jbcpp-2019-0147 | DOI Listing |
Int J Biol Macromol
November 2024
Faculty of Pharmacy, Universiti Sultan Zainal Abidin, Besut Campus, Besut 22200, Terengganu, Malaysia. Electronic address:
Colon-targeted delivery offers several benefits for oral protein delivery, such as low proteolytic enzyme activity, a natural pH environment, and extended residence time, which improve the bioavailability of the encapsulated protein. Therefore, we hypothesize that developing a novel colonic nanocarrier system, featuring modified chitosan that is soluble at physiological pH and coated with a colon-degradable polymer, will provide an effective delivery system for oral insulin. This study aims to synthesize insulin-loaded pectin-trimethyl chitosan nanoparticles (Ins-P-TMC-NPs) as an oral insulin delivery system and to evaluate its efficacy both in vitro and in vivo.
View Article and Find Full Text PDFJ Med Life
February 2024
Department of Pharmacy, Al-Mustafa University College, Baghdad, Iraq.
Insulin is the cornerstone of treatment in type 1 diabetes mellitus. However, because of its protein structure, insulin has to be administered via injection, and many attempts have been made to create oral formulations, especially using nanoparticles (NPs). The aim of this study was to compare the hypoglycemic effect of insulin-loaded NPs to that of subcutaneous insulin in an in vivo rat model of diabetes.
View Article and Find Full Text PDFJ Basic Clin Physiol Pharmacol
November 2019
Department of Laboratory Sciences, School of Allied Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran.
Background Diabetes mellitus is a chronic metabolic disorder that undesirably affects both central and peripheral nervous systems through the apoptosis of neurons. Insulin and insulin-like growth factors (IGFs) inhibit apoptosis of oligodendrocytes. The objective of this study was to determine whether oral insulin in the form of nanoparticles may have similar effects to injectable insulin in increasing the gene expression of IGF1 and IGF2.
View Article and Find Full Text PDFIndian J Clin Biochem
October 2019
1Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, 65178 Hamadan, Iran.
Iran J Basic Med Sci
October 2018
Department of Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
Objectives: Chronic hyperglycemia leads to activation of the advanced glycation end products (AGE)-receptor (RAGE) for AGE axis and oxidative stress, which promote diabetic renal damage. This study examines the effect of insulin-loaded trimethyl chitosan nanoparticles on the kidney tissue of diabetic rats.
Materials And Methods: Twenty-five male Wistar rats were randomly divided into 5 groups: normal control (C), diabetic group without treatment (DM), diabetic group treated with chitosan-based nanoparticle (DM+NP, 1 ml by gavage), diabetic group treated with 8 IU/kg insulin-loaded trimethyl chitosan nanoparticles (DM+N.