98%
921
2 minutes
20
The endophytic strain isolated from metal-contaminated soil was inoculated in roots to identify genes involved in metal stress response and plant growth promotion. We analyzed the transcriptome of roots inoculated with . De novo sequencing, assembly, and analysis were performed to identify molecular mechanisms involved in metal stress tolerance and plant growth promotion. A total of 393,371,743 paired-end reads were assembled into 135,155 putative transcripts. It was found that 663 genes significantly changed their expression in the presence of treatment, of which 369 were up-regulated and 294 were down-regulated. We found differentially expressed genes (DEGs) encoding metal transporters, transcription factors, stress and defense response proteins, as well as DEGs involved in auxin biosynthesis and metabolism. Our results showed that the inoculation of enhanced tolerance to metals and growth promotion on . This study provides new information to understand molecular mechanisms involved in plant-microbe interactions under metals stress.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6920756 | PMC |
http://dx.doi.org/10.3390/microorganisms7110490 | DOI Listing |
BMC Pulm Med
September 2025
Division of Cellular Pneumology, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, 23845, Germany.
Background: Volatile anesthetics are gaining recognition for their benefits in long-term sedation of mechanically ventilated patients with bacterial pneumonia and acute respiratory distress syndrome. In addition to their sedative role, they also exhibit anti-bacterial and anti-inflammatory properties, though the mechanisms behind these effects remain only partially understood. In vitro studies examining the prolonged impact of volatile anesthetics on bacterial growth, inflammatory cytokine response, and surfactant proteins - key to maintaining lung homeostasis - are still lacking.
View Article and Find Full Text PDFGenome Biol
September 2025
Department of Biology, Plant-Microbe Interactions, Science for Life, Utrecht University, Utrecht, 3584CH, The Netherlands.
Background: Plant roots release root exudates to attract microbes that form root communities, which in turn promote plant health and growth. Root community assembly arises from millions of interactions between microbes and the plant, leading to robust and stable microbial networks. To manage the complexity of natural root microbiomes for research purposes, scientists have developed reductionist approaches using synthetic microbial inocula (SynComs).
View Article and Find Full Text PDFBMC Public Health
September 2025
The Child Health Care Service, Region Jönköping County, Jönköping, Sweden.
Background: The first year of a child's life is essential for promoting a healthy life, and the transition to becoming a parent can be a challenge; parents need to develop confidence in their own capacity to care for their child. The national Child Health Services programme in Sweden offers parental support, both on a universal level and in accordance with the individual family's needs. This study explores parents' experiences of an extended home-visit programme offered through a Family Centre to all first-time parents in a municipality.
View Article and Find Full Text PDFNat Aging
September 2025
Aging Biomarker Consortium (ABC), Beijing, China.
The global surge in the population of people 60 years and older, including that in China, challenges healthcare systems with rising age-related diseases. To address this demographic change, the Aging Biomarker Consortium (ABC) has launched the X-Age Project to develop a comprehensive aging evaluation system tailored to the Chinese population. Our goal is to identify robust biomarkers and construct composite aging clocks that capture biological age, defined as an individual's physiological and molecular state, across diverse Chinese cohorts.
View Article and Find Full Text PDFOncogene
September 2025
Department of Molecular Medicine and Biochemistry, Akita University Graduate School of Medicine, Akita, Japan.
Forkhead-box-protein P3 (FOXP3) is a key transcription factor in T regulatory cells (Tregs). However, its expression and significance in non-immune stromal cells in the tumor microenvironment remain unclear. Here, we demonstrated FOXP3 expression in stromal fibroblasts of mouse and human gastrointestinal tumors.
View Article and Find Full Text PDF