98%
921
2 minutes
20
In this work we present the coupling between Dry Martini, an efficient implicit solvent coarse-grained model for lipids, and the Lattice Boltzmann Molecular Dynamics (LBMD) simulation technique in order to include naturally hydrodynamic interactions in implicit solvent simulations of lipid systems. After validating the implementation of the model, we explored several systems where the action of a perturbing fluid plays an important role. Namely, we investigated the role of an external shear flow on the dynamics of a vesicle, the dynamics of substrate release under shear, and inquired the dynamics of proteins and substrates confined inside the core of a vesicle. Our methodology enables future exploration of a large variety of biological entities and processes involving lipid systems at the mesoscopic scale where hydrodynamics plays an essential role, e.g. by modulating the migration of proteins in the proximity of membranes, the dynamics of vesicle-based drug delivery systems, or, more generally, the behaviour of proteins in cellular compartments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6848203 | PMC |
http://dx.doi.org/10.1038/s41598-019-52760-y | DOI Listing |
Fundam Clin Pharmacol
October 2025
Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil.
This review highlights the integration of drug repurposing and nanotechnology-driven delivery strategies as innovative approaches to enhance the antifungal activity of statins against mucosal candidiasis, providing a framework for future translational research and clinical application. The rising prevalence of antifungal resistance and virulence factors of Candida albicans underscore the limitations of current therapies. Statins, commonly used as lipid-lowering agents, have emerged as attractive repurposed drug candidates due to their ability to interfere with fungal ergosterol biosynthesis and Ras-mediated signaling pathways.
View Article and Find Full Text PDFNat Commun
September 2025
State Key Laboratory of Loess Science, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China.
How terrestrial mean annual temperature (MAT) evolved throughout the past 2 million years (Myr) remains elusive, limiting our understanding of the patterns, mechanisms, and impacts of past temperature changes. Here we report a ~2-Myr terrestrial MAT record based on fossil microbial lipids preserved in the Heqing paleolake, East Asia. The increased amplitude and periodicity shift of glacial-interglacial changes in our record align with those in sea surface temperature (SST) records.
View Article and Find Full Text PDFCell Signal
September 2025
Department of Gastroenterology, The Second Affiliated Hospital of Guilin Medical University, Guilin 541199, China; Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin 541199, China; Guangxi Key Labora
Intestinal dysmotility is a major complication that significantly impacts the prognosis of acute pancreatitis (AP). The neuronal nitric oxide synthase (nNOS) -expressing neurons within the enteric nervous system promote intestinal relaxation via the release of nitric oxide (NO). As the rate-limiting enzyme of NO synthesis, nNOS directly regulates NO production, thereby modulating intestinal motility.
View Article and Find Full Text PDFNeurobiol Dis
September 2025
LIMES Institute for Membrane Biology & Lipid Biochemistry, University Bonn, 53121 Bonn, Germany.
Free Radic Biol Med
September 2025
Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China. Electronic address:
Metabolic dysfunction-associated steatotic liver disease (MASLD), a leading cause of chronic liver pathology, lacks effective therapies. This study identifies ferroptosis-a lipid peroxidation-driven, iron-dependent form of cell death-as a central pathogenic mechanism in MASLD. Integrative proteomic and histopathological analyses of human and murine MASLD livers revealed marked ferroptosis activation, characterized by dysregulated iron metabolism (reduced FTH1 and GPX4; elevated ACSL4) and oxidative stress.
View Article and Find Full Text PDF