SHH signaling mediated by a prechordal and brain enhancer controls forebrain organization.

Proc Natl Acad Sci U S A

Mammalian Genetics Laboratory, Genetic Strains Research Center, National Institute of Genetics, Mishima 411-8540, Japan;

Published: November 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Sonic hedgehog (SHH) signaling plays a pivotal role in 2 different phases during brain development. Early SHH signaling derived from the prechordal plate (PrCP) triggers secondary induction in the forebrain, which overlies the PrCP, and the induced SHH signaling, in turn, directs late neuronal differentiation of the forebrain. Consequently, regulation in the PrCP is crucial for initiation of forebrain development. However, no enhancer that regulates prechordal expression has yet been found. Here, we identified a prechordal enhancer, named SBE7, in the vicinity of a cluster of known forebrain enhancers for This enhancer also directs expression in the ventral midline of the forebrain, which receives the prechordal SHH signal. Thus, the identified enhancer acts not only for the initiation of regulation in the PrCP but also for subsequent induction in the forebrain. Indeed, removal of the enhancer from the mouse genome markedly down-regulated the expression of in the rostral domains of the axial mesoderm and in the ventral midline of the forebrain and hypothalamus in the mouse embryo, and caused a craniofacial abnormality similar to human holoprosencephaly (HPE). These findings demonstrate that SHH signaling mediated by the newly identified enhancer is essential for development and growth of the ventral midline of the forebrain and hypothalamus. Understanding of the regulation governed by this prechordal and brain enhancer provides an insight into the mechanism underlying craniofacial morphogenesis and the etiology of HPE.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6876251PMC
http://dx.doi.org/10.1073/pnas.1901732116DOI Listing

Publication Analysis

Top Keywords

shh signaling
20
ventral midline
12
midline forebrain
12
forebrain
9
signaling mediated
8
prechordal brain
8
enhancer
8
brain enhancer
8
induction forebrain
8
regulation prcp
8

Similar Publications

CXXC Finger Protein 1 drives BMP signaling and progenitor cell differentiation during limb development.

Dev Biol

September 2025

Division of Endocrinology, Boston Children's Hospital, Boston, MA 02115 USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115 USA; Harvard Stem Cell Institute, 7 Divinity Ave, Cambridge, MA 02138 USA. Electronic address:

The mechanisms mediating endochondral bone formation remain incompletely understood. Here, we show that CXXC Finger Protein 1 (CFP1) is required for the onset of chondrogenesis during forelimb development. CFP1-deficient mesenchymal progenitor cells (LMPs) retain an immature molecular signature with elevated FGF and SHH signaling and repressed BMP signaling, in part, due to (1) reduced expression of type I BMP receptors, (2) reduced Smad1 protein levels and (3) an altered extracellular niche.

View Article and Find Full Text PDF

AOP 460: Antagonism of Smoothened receptor leading to orofacial clefting.

ALTEX

August 2025

Department of Biomedical Engineering, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA.

Sonic hedgehog (SHH) is a major intercellular signaling pathway involved in the orchestration of embryogenesis, including orofacial morphogenesis. The SHH pathway is sensitive to disruption, including both genetic predisposition and chemical-induced disruption at multiple molecular targets including antagonism of the SHH signal transducer Smoothened (SMO). Here we report the adverse outcome pathway (AOP) 460 describing the linkage between antagonism of the SMO receptor, a key intermediate in the hedgehog signaling, and orofacial clefts (OFCs).

View Article and Find Full Text PDF

The Sonic Hedgehog (Shh) signaling pathway is essential for the patterning, growth, and morphogenesis of many tissues. During early eye development, Shh is critical for the formation of the two optic vesicles, which give rise to the retina, retinal pigment epithelium (RPE), and optic stalk. It also regulates the balance between cell proliferation and differentiation during retinal histogenesis, a key process in shaping the cellular architecture of the mature retina.

View Article and Find Full Text PDF

Glioblastoma (GBM) represents an extremely aggressive brain malignancy with limited treatment options, difficult prognosis and a highly heterogeneous cellular architecture, including a subpopulation of cancer stem-like cells (CSCs). These CSCs frequently rely on developmental signaling pathways such as Sonic Hedgehog (SHH), which are typically dormant in adult tissue but reactivated in tumors. This study aimed to investigate how SHH pathway inhibition affects both bulk GBM cells (GBMCs) and CD133 + GBM cells (GBM CSCs), with particular emphasis on the influence of astrocyte co-culture, which more closely mimics the brain tumor microenvironment.

View Article and Find Full Text PDF

TAOK2 drives opposing cilia length deficits in 16p11.2 deletion and duplication carriers.

Stem Cell Reports

August 2025

Department of Pharmacology, University of Washington, Seattle, WA 98195, USA; Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98106, USA. Electronic address:

Deletion and duplication of the 16p11.2 genomic locus are associated with opposing changes in brain size. To determine cellular mechanisms that underlie these opposing phenotypes, we performed quantitative phosphoproteomic analyses of induced pluripotent stem cells (iPSCs)-derived neural progenitor cells (NPCs) obtained from unaffected individuals, 16p11.

View Article and Find Full Text PDF