Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
For better understanding of brain functions, optogenetic neural modulation has been widely employed in neural science research. For deep tissue in vivo applications, large-scale two-photon based near simultaneous 3D laser excitation is needed. Although 3D holographic laser excitation is nowadays common practice, the inherent short coherence length of the commonly used femtosecond pulses fundamentally restricts the achievable field-of-view. Here we report a technique for near simultaneous large-scale femtosecond holographic 3D excitation. Specifically, we achieved two-photon excitation over 1.3 mm field-of-view within 1.3 milliseconds, which is sufficiently fast even for spike timing recording. The method is scalable and compatible with the commonly used two-photon sources and imaging systems in neuroscience research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7045872 | PMC |
http://dx.doi.org/10.1364/OE.27.032228 | DOI Listing |