Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Many biometric systems based on physiological traits such as ones facial characteristics, iris, and fingerprint have been developed for authentication purposes. Such security systems, however, commonly suffer from impersonation attacks such as obfuscation, abrasion, latent samples, and covert attack. More conventional behavioral methods, such as passwords and signatures, suffer from similar issues and can easily be spoofed. With growing levels of private data readily available across the internet, a more robust authentication system is needed for use in emerging technologies and mobile applications. In this paper, we present a novel multimodal biometric user authentication framework by combining the behavioral dynamic signature with the the physiological electroencephalograph (EEG) to restrict unauthorized access. EEG signals of 33 genuine users were collected while signing on their mobile phones. The recorded sequences were modeled using a bidirectional long short-term memory neural network (BLSTM-NN) based sequential classifier to accomplish person identification and verification. An accuracy of 98.78% was obtained for identification using decision fusion of dynamic signatures and EEG signals. The robustness of the framework was also tested against 1650 impersonation attempts made by 25 forged users by imitating the dynamic signatures of genuine users. Verification performance was measured using detection error tradeoff (DET) curves and half total error rate (HTER) security matrices using true positive rate (TPR) and false acceptance rate (FAR), resulting in 3.75% FAR and 1.87% HTER with 100% TPR for forgery attempts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6864782PMC
http://dx.doi.org/10.3390/s19214641DOI Listing

Publication Analysis

Top Keywords

dynamic signatures
12
eeg signals
8
genuine users
8
fusion neuro-signals
4
dynamic
4
neuro-signals dynamic
4
signatures
4
signatures person
4
authentication
4
person authentication
4

Similar Publications

Low-grade non-muscle invasive bladder cancer is a specific category of bladder cancer with a favourable prognosis; however, its management presents several challenges. The risk of stage progression is very low, but approximately half of patients will experience recurrence within the first 5 years after diagnosis. This high propensity for recurrence, coupled with the threat of progression, mandates ongoing surveillance.

View Article and Find Full Text PDF

Acute lymphoblastic leukemia (ALL) preferentially localizes in the bone marrow (BM) and displays recurrent patterns of medullary and extra-medullary involvement. Leukemic cells exploit their niche for propagation and survive selective pressure by chemotherapy in the BM microenvironment, suggesting the existence of protective mechanisms. Here, we established a three-dimensional (3D) BM mimic with human mesenchymal stromal cells and endothelial cells that resemble vasculature-like structures to explore the interdependence of leukemic cells with their microenvironment.

View Article and Find Full Text PDF

Targeted hotspot profiling reveals a functionally relevant mutation in bladder cancer.

Urol Oncol

September 2025

Nutritional, Genes and Human Disease Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh. Electronic address:

Background: Understanding the mutational landscape is critical for elucidating the molecular mechanisms driving cancer progression. This study aimed to profile somatic mutations in bladder cancer patients (N=7) from Bangladesh to provide insights into the genetic alterations underlying this malignancy.

Methods: We performed targeted sequencing of 50 oncogenes and tumor suppressor genes using the Ion AmpliSeq Cancer Hotspot Panel v2 on tumor and matched blood samples from seven bladder cancer patients.

View Article and Find Full Text PDF

Dynamic Interaction of Oligodendrocyte Precursor Cells with Other Cell Types in the Central Nervous System.

Neurochem Int

September 2025

Department of Neurobiology, College of Basic Medicine, Key Laboratory of Molecular Neurobiology of Ministry of Education, Naval Medical University, Shanghai 200433, China. Electronic address:

Traditionally, oligodendrocyte precursor cells (OPCs) were primarily regarded for their differentiation potential to mature oligodendrocytes that ensheath central nervous system (CNS) axons through myelin formation. Recent breakthroughs in single-cell sequencing and in vivo imaging technologies have revolutionized our understanding, revealing that OPCs engage in extensive dynamic interactions with diverse CNS cell populations during neurodevelopment, tissue homeostasis maintenance, and pathological microenvironment remodeling. Notably, while OPCs exhibit relatively conserved phenotypic signatures, their functional plasticity within heterogeneous microenvironments demonstrates significant spatial specificity and disease-context dependence.

View Article and Find Full Text PDF

Source-specific insights into photochemical and microbial degradation of dissolved organic matter in coastal environments.

Mar Environ Res

September 2025

Shandong Key Laboratory of Coastal Environmental Processes, Yantai, Shandong, 264003, China.

Coastal zones are critical for the biogeochemical cycling of dissolved organic matter (DOM) in marine ecosystems, yet the relative importance of photochemical and microbial degradation in DOM transformation remains poorly understood due to complex hydrodynamics, diverse sources, and human activities. Through 14-day laboratory incubations, we investigated DOM transformation mechanisms from three common marine coastal space uses: port, mariculture and inshore areas adjacent to Yantai City. DOM characterization was performed using fluorescence excitation-emission matrix parallel factor (EEM-PARAFAC) and UV-Vis spectroscopic indices.

View Article and Find Full Text PDF