Microfabricated porous layer open tubular (PLOT) column.

Lab Chip

Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA. and Center for Wireless Integrated MicroSensing and Systems (WIMS2), University of Michigan, Ann Arbor, MI 48109, USA.

Published: December 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Development of micro gas chromatography (μGC) is aimed at rapid and in situ analysis of volatile organic compounds (VOCs) for environmental protection, industrial monitoring, and toxicology. However, due to the lack of appropriate microcolumns and associated stationary phases, current μGC is unable to separate highly volatile chemicals such as methane, methanol, and formaldehyde, which are of great interest for their high toxicity and carcinogenicity. This inability has significantly limited μGC field applicability. To address this deficiency, this paper reports the development and characterization of a microfabricated porous layer open tubular (μPLOT) column with a divinylbenzene-based stationary phase. The separation capabilities of the μPLOT column are demonstrated by three distinct analyses of light alkanes, formaldehyde solution, and organic solvents, exhibiting its general utility for a wide range of highly volatile compounds. Further characterization shows the robust performance of the μPLOT column in the presence of high moisture and at high temperatures (up to 300 °C). The small footprint and the ability to separate highly volatile chemicals make the μPLOT column highly suitable for integration into μGC systems, thus significantly broadening μGC's applicability to rapid, field analysis of VOCs.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9lc00886aDOI Listing

Publication Analysis

Top Keywords

μplot column
16
highly volatile
12
microfabricated porous
8
porous layer
8
layer open
8
open tubular
8
separate highly
8
volatile chemicals
8
column
5
tubular plot
4

Similar Publications

Intraosseous Hemangioma of the Zygomatic Bone: A Rare Maxillofacial Case in a 57-Year-Old Woman.

Case Rep Dent

September 2025

Department of Oral and Maxillofacial Radiology, School of Dentistry, Zanjan University of Medical Sciences, Zanjan, Zanjan Province, Iran.

Central hemangioma is one of the rare lesions of the jawbones, with a prevalence ranging between 0.5% and 1%. It more commonly occurs in the vertebral column and cranial bones, with rare occurrences in the jaws.

View Article and Find Full Text PDF

The role of biochar in combating microplastic pollution: a bibliometric analysis in environmental contexts.

Beilstein J Nanotechnol

August 2025

Faculty of Engineering and Technology, Saigon University, 273 An Duong Vuong Street, Cho Quan Ward, Ho Chi Minh City 700000, Vietnam.

This study employs a bibliometric analysis using CiteSpace to explore research trends on the impact of biochar on microplastics (MPs) in soil and water environments. In agricultural soils, MPs reduce crop yield, alter soil properties, and disrupt microbial diversity and nutrient cycling. Biochar, a stable and eco-friendly material, has demonstrated effectiveness in mitigating these effects by restoring soil chemistry, enhancing microbial diversity and improving crop productivity.

View Article and Find Full Text PDF

The sustainable synthesis of bio-based monomers from renewable biomass intermediates is a central goal in green chemistry and biorefinery innovation. This study introduces a synergistic catalytic-enzymatic strategy for the efficient and eco-friendly oxidation of 5-hydroxymethylfurfural (5-HMF) into 2,5-furandicarboxylic acid (FDCA), a key monomer for next-generation biodegradable plastics. The catalytic phase employed non-noble metal catalysts, MnO and Co-Mn supported on activated carbon (Co-Mn/AC), under mild batch reaction conditions at 90 °C.

View Article and Find Full Text PDF

In this work, confocal microscopy is employed to study the loading and fouling behavior in AAV affinity resins as well as the implications of resin reuse with several commercial chromatographic materials and feed mixtures. Resin samples are obtained from both batch and column experiments, and confocal microscopy is carried out to examine the adsorption profiles in the beads after loading, wash, elution, and CIP steps. A comparison of PSDVB-based POROS CaptureSelect (PCS) AAV resins with agarose-based AVIPure AAV9 resins revealed distinct differences in both AAV transport and resin fouling.

View Article and Find Full Text PDF

Determination of alcohol concentration in a single drop blood obtained via fingertip using gas chromatography/mass spectrometry coupled with solid-phase microextraction.

Leg Med (Tokyo)

September 2025

Department of Analytical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41, Ebara, Shinagawa-ku, Tokyo 142-8501, Japan.

This study investigated headspace solid-phase microextraction (HS-SPME)-gas chromatography (GS)/mass spectrometry as a low-complexity method for accurate measurement of blood alcohol concentration (BAC) changes in humans over time following alcohol consumption. The aim was to develop an analytical method that would require as small blood samples as possible-smaller than that required for the conventional method-thereby reducing the burden on the subject. Polyethylene glycol (PEG) was used as the fiber material for SPME, and a DB-WAX capillary column was used for GC.

View Article and Find Full Text PDF