A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

The spinal cord-gut-immune axis as a master regulator of health and neurological function after spinal cord injury. | LitMetric

The spinal cord-gut-immune axis as a master regulator of health and neurological function after spinal cord injury.

Exp Neurol

The Belford Center for Spinal Cord Injury, the Center for Brain and Spinal Cord Repair, Department of Neuroscience, Wexner Medical Center at The Ohio State University, USA. Electronic address:

Published: January 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Most spinal cord injury (SCI) research programs focus only on the injured spinal cord with the goal of restoring locomotor function by overcoming mechanisms of cell death or axon regeneration failure. Given the importance of the spinal cord as a locomotor control center and the public perception that paralysis is the defining feature of SCI, this "spinal-centric" focus is logical. Unfortunately, such a focus likely will not yield new discoveries that reverse other devastating consequences of SCI including cardiovascular and metabolic disease, bladder/bowel dysfunction and infection. The current review considers how SCI changes the physiological interplay between the spinal cord, the gut and the immune system. A suspected culprit in causing many of the pathological manifestations of impaired spinal cord-gut-immune axis homeostasis is the gut microbiota. After SCI, the composition of the gut microbiota changes, creating a chronic state of gut "dysbiosis". To date, much of what we know about gut dysbiosis was learned from 16S-based taxonomic profiling studies that reveal changes in the composition and abundance of various bacteria. However, this approach has limitations and creates taxonomic "blindspots". Notably, only bacteria can be analyzed. Thus, in this review we also discuss how the application of emerging sequencing technologies can improve our understanding of how the broader ecosystem in the gut is affected by SCI. Specifically, metagenomics will provide researchers with a more comprehensive look at post-injury changes in the gut virome (and mycome). Metagenomics also allows changes in microbe population dynamics to be linked to specific microbial functions that can affect the development and progression of metabolic disease, immune dysfunction and affective disorders after SCI. As these new tools become more readily available and used across the research community, the development of an "ecogenomic" toolbox will facilitate an Eco-Systems Biology approach to study the complex interplay along the spinal cord-gut-immune axis after SCI.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6918675PMC
http://dx.doi.org/10.1016/j.expneurol.2019.113085DOI Listing

Publication Analysis

Top Keywords

spinal cord
20
spinal cord-gut-immune
12
cord-gut-immune axis
12
spinal
8
cord injury
8
sci
8
metabolic disease
8
interplay spinal
8
gut microbiota
8
gut
7

Similar Publications