Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
We investigate the buildup of strain in InP quantum dots with the addition of shells of the lower-lattice constant materials ZnSe and ZnS by Raman spectroscopy. Both materials induce compressive strain in the core, which increases with increasing shell volume. We observe a difference in the shell behavior between the two materials: the thickness-dependence points toward an influence of the material stiffness. ZnS has a larger Young's modulus and requires less material to develop stress on the InP lattice at the interface, while ZnSe requires several layers to form a stress-inducing lattice at the interface. This hints at the material stiffness being an additional parameter of relevance for designing strained core/shell quantum dots.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.5124674 | DOI Listing |