Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The goal of this study was to identify a novel target for antibody-drug conjugate (ADC) development in triple negative breast cancer (TNBC), which has limited treatment options, using gene expression datasets and in vitro siRNA/CRISPR and in vivo functional assays. We analyzed 4467 breast cancers and identified GABRP as top expressed gene in TNBC with low expression in most normal tissues. GABRP protein was localized to cell membrane with broad range of receptors/cell (815-53,714) and expressed by nearly half of breast cancers tissues. GABRP gene knockdown inhibited TNBC cell growth and colony formation in vitro and growth of MDA-MB-468 xenografts in nude mice. Commercially available anti-GABRP antibody (5-100 μg/ml) or de novo generated Fabs (20 μg/ml) inhibited TNBC cell growth in vitro. The same antibody conjugated to mertansine (DM1) also showed significant anticancer activity at nanomolar concentrations. Our results indicate that GABRP is a potential novel therapeutic target for ADC development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6797726 | PMC |
http://dx.doi.org/10.1038/s41598-019-51453-w | DOI Listing |