A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Parameter estimation to study the immediate impact of aortic cross-clamping using reduced order models. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Aortic cross-clamping is a common strategy during vascular surgery, however, its instantaneous impact on hemodynamics is unknown. We, therefore, developed two numerical models to estimate the immediate impact of aortic clamping on the vascular properties. To assess the validity of the models, we recorded continuous invasive pressure signals during abdominal aneurysm repair surgery, immediately before and after clamping. The first model is a zero-dimensional (0D) three-element Windkessel model, which we coupled to a gradient-based parameter estimation algorithm to identify patient-specific parameters such as vascular resistance and compliance. We found a 10% increase in the total resistance and a 20% decrease in the total compliance after clamping. The second model is a nine-artery network corresponding to an average human body in which we solved the one-dimensional (1D) blood flow equations. With a similar parameter estimation method and using the results from the 0D model, we identified the resistance boundary conditions of the 1D network. Determining the patient-specific total resistance and the distribution of peripheral resistances through the parameter estimation process was sufficient for the 1D model to accurately reproduce the impact of clamping on the pressure waveform. Both models gave an accurate description of the pressure wave and had a high correlation (R > .95) with experimental blood pressure data.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cnm.3261DOI Listing

Publication Analysis

Top Keywords

parameter estimation
16
impact aortic
8
aortic cross-clamping
8
total resistance
8
model
5
parameter
4
estimation study
4
impact
4
study impact
4
cross-clamping reduced
4

Similar Publications