Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Glaucoma is a serious eye disease that can cause permanent blindness and is difficult to diagnose early. Optic disc (OD) and optic cup (OC) play a pivotal role in the screening of glaucoma. Therefore, accurate segmentation of OD and OC from fundus images is a key task in the automatic screening of glaucoma. In this paper, we designed a U-shaped convolutional neural network with multi-scale input and multi-kernel modules (MSMKU) for OD and OC segmentation. Such a design gives MSMKU a rich receptive field and is able to effectively represent multi-scale features. In addition, we designed a mixed maximum loss minimization learning strategy (MMLM) for training the proposed MSMKU. This training strategy can adaptively sort the samples by the loss function and re-weight the samples through data enhancement, thereby synchronously improving the prediction performance of all samples. Experiments show that the proposed method has obtained a state-of-the-art breakthrough result for OD and OC segmentation on the RIM-ONE-V3 and DRISHTI-GS datasets. At the same time, the proposed method achieved satisfactory glaucoma screening performance on the RIM-ONE-V3 and DRISHTI-GS datasets. On datasets with an imbalanced distribution between typical and rare sample images, the proposed method obtained a higher accuracy than existing deep learning methods.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6833024 | PMC |
http://dx.doi.org/10.3390/s19204401 | DOI Listing |