Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The present work demonstrates the utility of temperature controlled set up with pressurized headspace oxygen as an approach to effectively reduce the time required for solid-state drug-excipient compatibility study. To illustrate the utility, the incompatibility of polyethylene glycol (PEG) and polyethylene oxide (PEO) with Famotidine (Fam) was shown. Owing to thermal and oxidative stress, polyethylene ether moieties of PEG generated reactive impurities, resulting in the degradation of Fam. The chemical degradation was evaluated via liquid chromatography. Around 20% of degradation was observed in the pressurized oxygen set up, whereas, no degradation was found in the absence of oxidative stress. On increasing the excipient fraction, the Fam degradation increased proportionally. Formation of aldehydes and free radicals from excipients were proposed as the precursors for Fam degradation. The generation of aldehydes and free radicals was confirmed by infrared and Electron Spin Resonance (ESR) spectroscopic analysis, respectively. Overall, the present study demonstrated the utility of pressurized oxygen set up as a rapid and routine tool for studying drug-excipient incompatibility at temperatures relevant drug-product manufacture.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jpba.2019.112893 | DOI Listing |