A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Tuning Radical Relay Residues by Proton Management Rescues Protein Electron Hopping. | LitMetric

Tuning Radical Relay Residues by Proton Management Rescues Protein Electron Hopping.

J Am Chem Soc

Department of Chemistry and Chemical Biology , Cornell University, Ithaca , New York 14853 , United States.

Published: November 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Transient tyrosine and tryptophan radicals play key roles in the electron transfer (ET) reactions of photosystem (PS) II, ribonucleotide reductase (RNR), photolyase, and many other proteins. However, Tyr and Trp are not functionally interchangeable, and the factors controlling their reactivity are often unclear. Cytochrome peroxidase (CcP) employs a Trp191 radical to oxidize reduced cytochrome c (). Although a Tyr191 replacement also forms a stable radical, it does not support rapid ET from . Here we probe the redox properties of CcP Y191 by non-natural amino acid substitution, altering the ET driving force and manipulating the protic environment of Y191. Higher potential fluorotyrosine residues increase ET rates marginally, but only addition of a hydrogen bond donor to Tyr191 (via Leu232His or Glu) substantially alters activity by increasing the ET rate by nearly 30-fold. ESR and ESEEM spectroscopies, crystallography, and pH-dependent ET kinetics provide strong evidence for hydrogen bond formation to Y191 by His232/Glu232. Rate measurements and rapid freeze quench ESR spectroscopy further reveal differences in radical propagation and oxidation that support an increased Y191 formal potential of ∼200 mV in the presence of E232. Hence, Y191 inactivity results from a potential drop owing to Y191 deprotonation. Incorporation of a well-positioned base to accept and donate back a hydrogen bond upshifts the Tyr potential into a range where it can effectively oxidize . These findings have implications for the Y/Y radicals of PS II, hole-hopping in RNR and cryptochrome, and engineering proteins for long-range ET reactions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7043243PMC
http://dx.doi.org/10.1021/jacs.9b05715DOI Listing

Publication Analysis

Top Keywords

hydrogen bond
12
y191
6
tuning radical
4
radical relay
4
relay residues
4
residues proton
4
proton management
4
management rescues
4
rescues protein
4
protein electron
4

Similar Publications