Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Accumulating experimental evidence indicates that S-nitrosylation (technically S-nitrosation) events have a central role in plant biology, presumably accounting for much of the widespread influence of nitric oxide (NO) on developmental, metabolic, and stress-related plant responses. Therefore, the accurate detection and quantification of S-nitrosylated proteins and peptides can be particularly useful to determine the relevance of this class of compounds in the ever-increasing number of NO-dependent signaling events described in plant systems. Up to now, the quantification of S-nitrosothiols (SNOs) in plant samples has mostly relied on the Saville reaction and the ozone-based chemiluminescence method, which lacks sensitivity and are very time-consuming, respectively. Taking advantage of the photolytic properties of S-nitrosylated proteins and peptides, the method described in this chapter allows simple, fast, and high-throughput detection of SNOs in plant samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-4939-9790-9_4 | DOI Listing |