Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Nuclear segmentation and classification within Haematoxylin & Eosin stained histology images is a fundamental prerequisite in the digital pathology work-flow. The development of automated methods for nuclear segmentation and classification enables the quantitative analysis of tens of thousands of nuclei within a whole-slide pathology image, opening up possibilities of further analysis of large-scale nuclear morphometry. However, automated nuclear segmentation and classification is faced with a major challenge in that there are several different types of nuclei, some of them exhibiting large intra-class variability such as the nuclei of tumour cells. Additionally, some of the nuclei are often clustered together. To address these challenges, we present a novel convolutional neural network for simultaneous nuclear segmentation and classification that leverages the instance-rich information encoded within the vertical and horizontal distances of nuclear pixels to their centres of mass. These distances are then utilised to separate clustered nuclei, resulting in an accurate segmentation, particularly in areas with overlapping instances. Then, for each segmented instance the network predicts the type of nucleus via a devoted up-sampling branch. We demonstrate state-of-the-art performance compared to other methods on multiple independent multi-tissue histology image datasets. As part of this work, we introduce a new dataset of Haematoxylin & Eosin stained colorectal adenocarcinoma image tiles, containing 24,319 exhaustively annotated nuclei with associated class labels.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.media.2019.101563DOI Listing

Publication Analysis

Top Keywords

segmentation classification
20
nuclear segmentation
16
multi-tissue histology
8
histology images
8
haematoxylin eosin
8
eosin stained
8
nuclei
7
segmentation
6
nuclear
6
classification
5

Similar Publications

Purpose To assess the effectiveness of an explainable deep learning (DL) model, developed using multiparametric MRI (mpMRI) features, in improving diagnostic accuracy and efficiency of radiologists for classification of focal liver lesions (FLLs). Materials and Methods FLLs ≥ 1 cm in diameter at mpMRI were included in the study. nn-Unet and Liver Imaging Feature Transformer (LIFT) models were developed using retrospective data from one hospital (January 2018-August 2023).

View Article and Find Full Text PDF

The morphological patterns of lung adenocarcinoma (LUAD) are recognized for their prognostic significance, with ongoing debate regarding the optimal grading strategy. This study aimed to develop a clinical-grade, fully quantitative, and automated tool for pattern classification/quantification (PATQUANT), to evaluate existing grading strategies, and determine the optimal grading system. PATQUANT was trained on a high-quality dataset, manually annotated by expert pathologists.

View Article and Find Full Text PDF

Diffuse large B-cell lymphoma is the most common type of non-Hodgkin lymphoma (NHL) in humans, accounting for about 30-40% of NHL cases worldwide. Canine diffuse large B-cell lymphoma (cDLBCL) is the most common lymphoma subtype in dogs and demonstrates an aggressive biologic behaviour. For tissue biopsies, current confirmatory diagnostic approaches for enlarged lymph nodes rely on expert histopathological assessment, which is time-consuming and requires specialist expertise.

View Article and Find Full Text PDF

Coronary artery aneurysms (CAAs) are frequent entities that are encountered in up to 8% of patients undergoing coronary imaging. The most frequent cause of CAAs is atherosclerotic "positive remodeling" of coronary arteries, while congenital, inflammatory, and traumatic etiologies could also be seen. Aneurysms serve as foci for thrombus formation, which may occlude the aneurysmatic segment or embolize distally.

View Article and Find Full Text PDF

The role of AI for improved management of breast cancer: Enhanced diagnosis and health disparity mitigation.

Comput Methods Programs Biomed

September 2025

Electrical and Computer Engineering Department, School of Engineering, Morgan State University, Baltimore, MD, 21251, USA. Electronic address:

Breast Cancer (BC) remains a leading cause of morbidity and mortality among women globally, accounting for 30% of all new cancer cases (with approximately 44,000 women dying), according to recent American Cancer Society reports. Therefore, accurate BC screening, diagnosis, and classification are crucial for timely interventions and improved patient outcomes. The main goal of this paper is to provide a comprehensive review of the latest advancements in BC detection, focusing on diagnostic BC imaging, Artificial Intelligence (AI) driven analysis, and health disparity considerations.

View Article and Find Full Text PDF