Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Iron supplementation presents several challenges, such as low bioavailability, high reactivity and a metallic taste. Iron absorption is enhanced by complexing with organic compounds such as peptides, while microencapsulation is an alternative to protect the mineral and mask undesirable flavors. Fe-peptide complexes were obtained by reacting small whey peptides (< 5 kDa) with iron (from ferrous sulfate) under controlled conditions. Maltodextrin (MD) and polydextrose (PD) were used as the wall materials and spray dried to form particles containing the active Fe-peptide. The conditions of enzymatic hydrolysis with the bacterial endopeptidase produced from Bacillus licheniformis were optimized to achieve a high degree of cleavage (~20% degree of hydrolysis). The physicochemical and structural properties of the microparticles were evaluated during storage (365 days). The encapsulation process showed high efficiency (84%) and process yield (≥90%). The iron dialyzability and uptake by Caco-2 cells from microparticles were at least 3-fold higher than the ferrous sulfate. The water content and water activity varied from 3.0 to 5.7% and from 0.29 to 0.44, respectively, after 365 days. SEM revealed morphological stability during storage and EDX showed the presence of iron ions at the surface of the microparticles, which could be free or complexed. The microparticles can be an alternative of higher bioavailable iron besides the further protection and iron stability which the microparticles may present when compared with the Fe-peptide complexes. Future studies could demonstrate the feasibility of applying these microparticles in formulation for food supplementation, concerning bioavailability and sensory aspects.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodres.2019.108505DOI Listing

Publication Analysis

Top Keywords

fe-peptide complexes
12
ferrous sulfate
8
iron
7
microparticles
6
microencapsulation performance
4
fe-peptide
4
performance fe-peptide
4
complexes stability
4
stability monitoring
4
monitoring iron
4

Similar Publications

The aim of this study is to evaluate the effects of dietary iron sources on growth performance, iron status and activities of Fe-containing enzymes and gene expression related to iron homeostasis in tissues of weaned pigs. A total of 480 piglets at d 28 (Duroc X Landrace) were allotted to four groups as a factorial arrangement of treatments with 30 pigs/pen (male: female = 1:1) and 4 replicate pens/treatment. The treatments for iron in the diets were: control basal diet (Con); Con + 150 mg Fe/kg as inorganic Fe (iFe); Con + 75 mg Fe/kg as inorganic Fe + 75 mg Fe/kg as organic Fe-peptide complex (iFe+oFe) and Con + 150 mg of Fe/kg as organic Fe-peptide complex (oFe).

View Article and Find Full Text PDF

Iron supplementation presents several challenges, such as low bioavailability, high reactivity and a metallic taste. Iron absorption is enhanced by complexing with organic compounds such as peptides, while microencapsulation is an alternative to protect the mineral and mask undesirable flavors. Fe-peptide complexes were obtained by reacting small whey peptides (< 5 kDa) with iron (from ferrous sulfate) under controlled conditions.

View Article and Find Full Text PDF

The study investigates the effect of permanganate pre-oxidation on the coagulation of peptides/proteins of Microcystis aeruginosa which comprise a major proportion of the organic matter during cyanobacterial bloom decay. Four different permanganate dosages (0.1, 0.

View Article and Find Full Text PDF

This paper focuses on elucidation of the mechanisms involved in the coagulation of peptides and proteins contained in cellular organic matter (COM) of cyanobacterium Microcystis aeruginosa by ferric coagulant. Furthermore, coagulation inhibition due to the formation of Fe-peptide/protein surface complexes was evaluated. The results of coagulation testing imply that removability of peptides and proteins is highly dependent on pH value which determines charge characteristics of coagulation system compounds and therefore the mechanisms of interactions between them.

View Article and Find Full Text PDF