A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Freeze-Damage Detection in Lemons Using Electrochemical Impedance Spectroscopy. | LitMetric

Freeze-Damage Detection in Lemons Using Electrochemical Impedance Spectroscopy.

Sensors (Basel)

Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Unidad Mixta Universitat Politècnica de València - Universitat de València, Camí de Vera s/n, 46022, Valencia, Spain.

Published: September 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Lemon is the most sensitive citrus fruit to cold. Therefore, it is of capital importance to detect and avoid temperatures that could damage the fruit both when it is still in the tree and in its subsequent commercialization. In order to rapidly identify frost damage in this fruit, a system based on the electrochemical impedance spectroscopy technique (EIS) was used. This system consists of a signal generator device associated with a personal computer (PC) to control the system and a double-needle stainless steel electrode. Tests with a set of fruits both natural and subsequently frozen-thawed allowed us to differentiate the behavior of the impedance value depending on whether the sample had been previously frozen or not by means of a single principal components analysis (PCA) and a partial least squares discriminant analysis (PLS-DA). Artificial neural networks (ANNs) were used to generate a prediction model able to identify the damaged fruits just 24 hours after the cold phenomenon occurred, with sufficient robustness and reliability (CCR = 100%).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6767336PMC
http://dx.doi.org/10.3390/s19184051DOI Listing

Publication Analysis

Top Keywords

electrochemical impedance
8
impedance spectroscopy
8
damage fruit
8
freeze-damage detection
4
detection lemons
4
lemons electrochemical
4
spectroscopy lemon
4
lemon sensitive
4
sensitive citrus
4
citrus fruit
4

Similar Publications