A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Investigating the plausibility of a PMF source apportionment solution derived using a small dataset: A case study from a receptor in a rural site in Apulia - South East Italy. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Results of a methodological study on the use of Positive Matrix Factorization (PMF) with smaller datasets are being reported in this work. This study is based on 29 PM and 33 PM samples from a receptor in a rural setup in Apulia (Southern Italy). Running PMF on the two size fractions separately resulted in the model not functioning correctly. We therefore, augmented the size of the dataset by aggregating the PM and PM data. The 5-factor solution obtained for the aggregated data was fairly rotationally stable, and was further refined by the rotational tools included in USEPA PMF version 5. These refinements include the imposition of constraints on the solution, based on our knowledge of the chemical composition of the aerosol sources affecting the receptor. Additionally, the uncertainties associated with this solution were fully characterised using the improved error estimation techniques in this version of PMF. Five factors in all, were isolated by PMF: ammonium sulfate, marine aerosol, mixed carbonaceous aerosol, crustal/Saharan dust and total traffic. The results obtained by PMF were further tested inter alia, by comparing them to those obtained by two other receptor modelling techniques: Constrained Weighted Non-negative Matrix Factorization (CW - NMF) and Chemical Mass Balance (CMB). The results of these tests suggest that the solution obtained by PMF, is valid, indicating that for this particular airshed PMF managed to extract most of the information about the aerosol sources affecting the receptor - even from a dataset with a limited number of samples.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2019.124376DOI Listing

Publication Analysis

Top Keywords

pmf
9
receptor rural
8
matrix factorization
8
aerosol sources
8
sources receptor
8
solution
5
receptor
5
investigating plausibility
4
plausibility pmf
4
pmf source
4

Similar Publications