Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Diapause in response to seasonality is an important model for rapid evolutionary adaptation that is highly genetically variable, and experiences strong natural selection. Forward genetic methods using various genomic and transcriptomic approaches have begun to characterize the genetic architecture and candidate genes underlying diapause evolution. Largely in parallel, reverse genetic studies have identified functional roles for candidate genes that may or may not be genetically variable. We illustrate the disconnect between the evolutionary and physiological literature using a suite of studies of the role of the circadian clock in diapause regulation. These extensive studies in two different disciplines provide excellent opportunities for integration, which should facilitate rapid progress in understanding both the regulation and evolution of diapause.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7212789 | PMC |
http://dx.doi.org/10.1016/j.cois.2019.08.003 | DOI Listing |