A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Development and in vitro assessment of an anti-tumor nano-formulation. | LitMetric

Development and in vitro assessment of an anti-tumor nano-formulation.

Colloids Surf B Biointerfaces

Department of Biomedical Engineering, University of Houston, Houston, TX, USA. Electronic address:

Published: December 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study aims to develop a new anti-cancer formulation based on the chelator Dp44mT (Di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone). Dp44mT has outstanding anti-tumor activity and the unique ability to overcome multidrug-resistance in cancer cells. This highly toxic compound has thus far only been applied in free form, limiting its therapeutic effectiveness. To reach its full therapeutic potential, however, Dp44mT should be encapsulated in a nano-carrier that would enable its selective and controlled delivery to malignant cells. As the first step towards this goal, here we encapsulate Dp44mT in nanoparticles (NPs) of poly(lactic-co-glycolic acid) (PLGA), characterize this nano-formulation, and evaluate its therapeutic potential against cancer cells in vitro. Our results showed that the Dp44mT-loaded NPs were homogenous in shape and size, and had good colloidal stability. These PLGA NPs also showed high encapsulation efficiency and loading capacity for Dp44mT and enabled the sustained and tunable release of this chelator. Dp44mT-NPs were uptaken by cancer cells, showed a strong and dose-dependent cytotoxicity towards these cells, and significantly increased apoptotic cell death, in both monolayer and spheroid tumor models. This formulation had a low-level of toxicity towards healthy control cells, indicating an inherent selectivity towards malignant cells. These results demonstrate the great potential of this novel Dp44mT-based nano-formulation for the use in cancer therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2019.110481DOI Listing

Publication Analysis

Top Keywords

cancer cells
12
therapeutic potential
8
malignant cells
8
cells
7
dp44mt
5
development vitro
4
vitro assessment
4
assessment anti-tumor
4
anti-tumor nano-formulation
4
nano-formulation study
4

Similar Publications