Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Acute myeloid leukemia (AML) is associated with mutations in transcriptional and epigenetic regulator genes impairing myeloid differentiation. The t(8;21)(q22;q22) translocation generates the RUNX1-ETO fusion protein, which interferes with the hematopoietic master regulator RUNX1. We previously showed that the maintenance of t(8;21) AML is dependent on RUNX1-ETO expression. Its depletion causes extensive changes in transcription factor binding, as well as gene expression, and initiates myeloid differentiation. However, how these processes are connected within a gene regulatory network is unclear. To address this question, we performed Promoter-Capture Hi-C assays, with or without RUNX1-ETO depletion and assigned interacting cis-regulatory elements to their respective genes. To construct a RUNX1-ETO-dependent gene regulatory network maintaining AML, we integrated cis-regulatory element interactions with gene expression and transcription factor binding data. This analysis shows that RUNX1-ETO participates in cis-regulatory element interactions. However, differential interactions following RUNX1-ETO depletion are driven by alterations in the binding of RUNX1-ETO-regulated transcription factors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6899442PMC
http://dx.doi.org/10.1016/j.celrep.2019.08.040DOI Listing

Publication Analysis

Top Keywords

runx1-eto depletion
12
t821 aml
8
myeloid differentiation
8
transcription factor
8
factor binding
8
gene expression
8
gene regulatory
8
regulatory network
8
element interactions
8
runx1-eto
6

Similar Publications

Modeling and therapeutic targeting of t(8;21) AML with/without TP53 deficiency.

Int J Hematol

August 2024

Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.

Acute myeloid leukemia (AML) with t(8;21)(q22;q22.1);RUNX1-ETO is one of the most common subtypes of AML. Although t(8;21) AML has been classified as favorable-risk, only about half of patients are cured with current therapies.

View Article and Find Full Text PDF

, a novel RUNX1 target gene, is down-regulated by RUNX1-ETO.

BBA Adv

February 2022

Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.

The fusion protein RUNX1-ETO is an oncogenic transcription factor generated by t(8;21) chromosome translocation, which is found in FAB-M2-type acute myeloid leukemia (AML). RUNX1-ETO is known to dysregulate the normal RUNX1 transcriptional network, which should involve essential factors for the onset of AML with t(8;21). In this study, we screened for possible transcriptional targets of RUNX1 by reanalysis of public data , and identified as a novel RUNX1 target gene because its expression was down-regulated in the presence of RUNX1-ETO.

View Article and Find Full Text PDF

The oncogenic fusion protein RUNX1-ETO is a product of the t(8;21) translocation and consists of the hematopoietic transcriptional master regulator RUNX1 and the repressor ETO. RUNX1-ETO is found in 10-15% of acute myeloid leukemia and interferes with the expression of genes that are essential for myeloid differentiation. The neutrophil serine protease Cathepsin G is one of the genes suppressed by RUNX1-ETO, but little is known about its impact on the regulation of other lysosomal proteases.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) is associated with mutations in transcriptional and epigenetic regulator genes impairing myeloid differentiation. The t(8;21)(q22;q22) translocation generates the RUNX1-ETO fusion protein, which interferes with the hematopoietic master regulator RUNX1. We previously showed that the maintenance of t(8;21) AML is dependent on RUNX1-ETO expression.

View Article and Find Full Text PDF