A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Expected Number and Height Distribution of Critical Points of Smooth Isotropic Gaussian Random Fields. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We obtain formulae for the expected number and height distribution of critical points of smooth isotropic Gaussian random fields parameterized on Euclidean space or spheres of arbitrary dimension. The results hold in general in the sense that there are no restrictions on the covariance function of the field except for smoothness and isotropy. The results are based on a characterization of the distribution of the Hessian of the Gaussian field by means of the family of Gaussian orthogonally invariant (GOI) matrices, of which the Gaussian orthogonal ensemble (GOE) is a special case. The obtained formulae depend on the covariance function only through a single parameter (Euclidean space) or two parameters (spheres), and include the special boundary case of random Laplacian eigenfunctions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6738978PMC
http://dx.doi.org/10.3150/17-BEJ964DOI Listing

Publication Analysis

Top Keywords

expected number
8
number height
8
height distribution
8
distribution critical
8
critical points
8
points smooth
8
smooth isotropic
8
isotropic gaussian
8
gaussian random
8
random fields
8

Similar Publications