98%
921
2 minutes
20
How motile bacteria move near a surface is a problem of fundamental biophysical interest and is key to the emergence of several phenomena of biological, ecological and medical relevance, including biofilm formation. Solid boundaries can strongly influence a cell's propulsion mechanism, thus leading many flagellated bacteria to describe long circular trajectories stably entrapped by the surface. Experimental studies on near-surface bacterial motility have, however, neglected the fact that real environments have typical microstructures varying on the scale of the cells' motion. Here, we show that micro-obstacles influence the propagation of peritrichously flagellated bacteria on a flat surface in a non-monotonic way. Instead of hindering it, an optimal, relatively low obstacle density can significantly enhance cells' propagation on surfaces due to individual forward-scattering events. This finding provides insight on the emerging dynamics of chiral active matter in complex environments and inspires possible routes to control microbial ecology in natural habitats.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6739365 | PMC |
http://dx.doi.org/10.1038/s41467-019-12010-1 | DOI Listing |
Int J Syst Evol Microbiol
September 2025
Second Institute of Oceanography, Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources, Hangzhou 310018, PR China.
A Gram-staining-negative, non-motile, aerobic, rod-shaped bacterium, designated 14752, was isolated from a saline lake in Xinjiang Uygur Autonomous Region, China. The strain was subjected to a taxonomic study using a polyphasic approach. Strain 14752 was able to grow at 4-40 ℃ (optimum 28 ℃), pH 6.
View Article and Find Full Text PDFCurr Microbiol
September 2025
Microbiology Laboratory, Department of Life Science, Kyonggi University, Suwon, Gyeonggi-Do, Republic of Korea.
A yellow-pigmented, non-motile, rod-shaped, and Gram-stain-negative bacterium was isolated from the soil of Yeongheung Island, Korea. The novel isolate, strain N803, was strictly aerobic, grew optimally at 30-35 °C, at pH 6.5, and in the presence of 0-2% NaCl.
View Article and Find Full Text PDFAppl Environ Microbiol
September 2025
DGIMI, Université de Montpellier, INRAE, Montpellier, France.
is an entomopathogenic bacterium involved in a mutualistic relationship with nematodes. produces a multitude of specialized metabolites by non-ribosomal peptide synthetase (NRPS) pathways to mediate bacterium-nematode-insect interactions. PAX cyclolipopeptides are a family of NRP-type molecules whose ecological role remains poorly understood.
View Article and Find Full Text PDFMicrobiologyopen
October 2025
Department of Biochemistry, Faculty of Science and Technology, Chiromo Campus, Off Riverside Drive, University of Nairobi, Nairobi, Kenya.
Alkaline pectinases are in demand in industrial processes that require the degradation of plant pectins at high pH, for example, removal of pectin stains from fabrics, cutlery, and porcelain; treatment of pectic wastewater; fermentation of coffee, tea, and cocoa; manufacture of poultry and animal feeds, and processing of textiles, and so forth. The present study aimed to (a) screen four alkaliphilic microbial isolates, previously obtained from samples collected around Lake Bogoria (soda lake), Baringo County, Kenya, for alkaline pectinases, and (b) characterize the pectinase-producers. The screening data revealed that all the isolates were pectinase producers, exhibiting catalytic activities that ranged from 1.
View Article and Find Full Text PDFFood Res Int
November 2025
College of Food Science and Technology, Northwest University, 229 North TaiBai Road, Xi'an 710069, China. Electronic address:
Food combinations featuring specific functional components represent one of the effective intervention strategies for alleviating functional gastrointestinal disorders induced by dietary and environmental factors. Honey and aloe vera have both been recognized as natural agents with laxative effects, yet the synergistic effects of their combination in alleviating constipation and the underlying regulatory mechanism remain to be elucidated. This study formulated a honey-aloe paste by employing honey as the primary ingredient compounded with aloe vera gel and investigated its preventive effects on loperamide-induced slow-transit constipation through a comprehensive analysis of gastrointestinal function and intestinal microenvironment.
View Article and Find Full Text PDF