Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Background: Cognitive disturbances occur early in Huntington's disease (HD) and place a significant burden on the lives of patients and family members. Whilst these impairments are typically attributed to deterioration of the frontal-striatal pathways, accumulating evidence suggests that hippocampal dysfunction may also contribute to such impairments. Here, we employ a novel spatial memory task that has previously been shown to elicit impairments in individuals with focal hippocampal lesions, as a means to further investigate the role of hippocampal dysfunction in HD.
Method: Sixty-four individuals participated in the study, including 32 healthy controls, 11 patients with diagnosed HD and 16 premanifest HD gene carriers. We also included an additional control group of 5 individuals with focal unilateral basal ganglia lesions. Participants undertook a task that measured perception and short-term spatial memory using computer-generated visual scenes.
Results: HD patients experienced significant impairments in spatial perception and memory, which strongly correlated with disease burden score (DBS). Premanifest gene carriers performed at a similar level to healthy controls throughout all aspects of the task indicating that the effects seen in the HD patients represent a deterioration in function. Interestingly, basal ganglia lesion patients were not impaired in any aspects of the task.
Conclusion: There is evidence of significant deficits in hippocampal-dependent spatial cognition in HD that cannot be explained as a function of degeneration to the basal ganglia. The impairments were greatest in individuals with higher DBSs, suggesting that deficits relate to the disease process in HD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cortex.2019.07.014 | DOI Listing |