Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Intracellular cobalamin metabolism (ICM) defects can be present as autosomal recessive or X-linked disorders. Parenteral hydroxocobalamin (P-OHCbl) is the mainstay of therapy, but the optimal dose has not been determined. Despite early treatment, long-term complications may develop. We have analyzed the biochemical and clinical responses in five patients with early onset of different types of ICM defects (cblC: patients 1-3; cblA: patient 4; cblX: patient 5) following daily P-OHCbl dose intensification (DI). In patient 4, P-OHCbl was started at age 10 years and in patient 5 at age 5 years. OHCbl was formulated at either, 5, 25, or 50 mg/mL. P-OHCbl was intravenously or subcutaneously (SQ) delivered, subsequently by placement of a SQ injection port except in patient 4. In all patients, homocysteine and methylmalonic acid levels, demonstrated an excellent response to various P-OHCbl doses. After age 36 months, patients 1-3 had a close to normal neurological examination with lower range developmental quotient. In patient 3, moderate visual impairment was present. Patient 4, at age 10 years, had normal renal, visual and cognitive function. In cblX patient 5, epilepsy was better controlled. In conclusion, P-OHCbl-DI caused an excellent control of metabolites in all patients. In the three cblC patients, comparison with patients, usually harboring identical genotype and similar metabolic profile, was suggestive of a positive effect, in favor of clinical efficacy. With P-OHCbl-DI, CblA patient has been placed into a lower risk to develop renal and optic impairment. In cblX patient, lower P-OHCbl doses were administrated to improve tolerability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6718108PMC
http://dx.doi.org/10.1002/jmd2.12055DOI Listing

Publication Analysis

Top Keywords

cblx patient
12
age years
12
patient
10
parenteral hydroxocobalamin
8
dose intensification
8
patients
8
early onset
8
intracellular cobalamin
8
icm defects
8
cblc patients
8

Similar Publications

Variants in the MMACHC gene cause combined methylmalonic acidemia and homocystinuria cblC type, the most common inborn error of intracellular cobalamin (vitamin B12) metabolism. cblC is associated with neurodevelopmental, hematological, ocular, and biochemical abnormalities. In a subset of patients, mild craniofacial dysmorphia has also been described.

View Article and Find Full Text PDF

Variants in the gene cause combined methylmalonic acidemia and homocystinuria type, the most common inborn error of intracellular cobalamin (vitamin B12) metabolism. is associated with neurodevelopmental, hematological, ocular, and biochemical abnormalities. In a subset of patients, mild craniofacial dysmorphia has also been described.

View Article and Find Full Text PDF

A child with methylmalonic acidemia and homocysteinemia cblX type presented focal seizures and epileptic spasms in early infancy, but the tandem mass spectrometry tests showed negative results during neonatal screening or acute attack. Despite treated with a variety of antiepileptic drugs, the child died at age of The blood spot sample of the patient was retrospectively tested with ultrahigh performance liquid chromatography-tandem mass spectrometry, and the increased levels of methylmalonic acid and homocysteine were revealed. Whole exome sequencing showed that the proband had a c.

View Article and Find Full Text PDF

Inherited defects of cobalamin metabolism.

Vitam Horm

April 2022

Department of Human Genetics, McGill University, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada.

Cobalamin (vitamin B) is required for activity of the enzymes methylmalonyl-CoA mutase and methionine synthase in human cells. Inborn errors affecting cobalamin uptake or metabolism are characterized by accumulation of the substrates for these enzymes, methylmalonic acid and homocysteine, in blood and urine. Inborn errors affecting synthesis of the adenosylcobalamin coenzyme required by methylmalonyl-CoA mutase (cblA and cblB) result in isolated methylmalonic aciduria; inborn errors affecting synthesis of the methylcobalamin coenzyme required by methionine synthase (cblE and cblG) result in isolated homocystinuria.

View Article and Find Full Text PDF

HCFC1, a global transcriptional regulator, has been shown to associate with MMACHC expression. Pathogenic variants in HCFC1 cause X-linked combined methylmalonic acidemia and hyperhomocysteinemia, CblX type (MIM# 309541). Recent studies showed that certain variants in HCFC1 are associated with X-linked intellectual disability with mild or absent metabolic abnormalities.

View Article and Find Full Text PDF