Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Since accurate identification of dermatophyte species is essential for epidemiological studies and implementing antifungal treatment, overcoming limitations of conventional diagnostics is a fruitful subject.

Objectives And Methods: In this study, we investigated real-time polymerase chain reaction(q-PCR), matrix-assisted laser desorption/ionisation time of flight mass spectrometry (MALDI-TOF MS) and nano-electrospray ionisation mass spectrometry (nano-ESI-MS) to detect and identify the most frequently isolated dermatophytes from human and animal dermatophytosis in comparison with conventional methods.

Results: Among 200 samples, the identified species were Microsporum canis (78.22%), Trichophyton verrucosum (10.89%) and T. mentagrophytes (5.94%). Q-PCR assay displayed great execution attributes for dermatophytes detection and identification. Using MALDI-TOF MS, M. canis, but none of T. violacium, T. verrucosum or T. mentagrophytes, could be identified. Nano-ESI-MS accurately identified all species. The potential virulence attributes of secreted proteases were anticipated and compared between species. Secreted endoproteases belonging to families/subfamilies of metalloproteases, subtilisins and aspartic protease were detected. The analysed exoproteases are aminopeptidases, dipeptidyl peptidases and carboxypeptidases. Microsporum canis have three immunogenic proteins, siderophore iron transporter mirB, protease inhibitors, plasma membrane proteolipid 3 and annexin.

Conclusion: In essence, q-PCR, MALDI-TOF MS and nano-ESI-MS assays are very nearly defeating difficulties of dermatophytes detection and identification, thereby, supplement or supplant conventional diagnosis of dermatophytosis.

Download full-text PDF

Source
http://dx.doi.org/10.1111/myc.12998DOI Listing

Publication Analysis

Top Keywords

dermatophytes human
8
human animal
8
animal dermatophytosis
8
mass spectrometry
8
identified species
8
microsporum canis
8
dermatophytes detection
8
detection identification
8
rapid identification
4
identification novel
4

Similar Publications

Trichophyton rubrum, a dermatophyte, demonstrates a notable ability to form mature biofilms on skin and associated surfaces, strengthening its resistance to antifungal agents. This characteristic poses intricate challenges in dermatological research and therapeutic strategies, underscoring the need for innovative approaches to effectively manage fungal infections. This work assessed the impact of the anti-biofilm enzymes, i.

View Article and Find Full Text PDF

Introduction: Tinea pedis is a common disease that affects up to 70% of adults during a lifetime. Most cases are caused by Trichophyton species. Worldwide, terbinafine resistance among dermatophytes is rising, which is concerning as terbinafine is the first-line treatment.

View Article and Find Full Text PDF

Cannabis compounds are well-known for their therapeutic applications in the treatment of various health issues. These substances, mainly cannabinoids, are known for their antimicrobial properties and ability to interact with various cells through endocannabinoid receptors. However, the limitations of cannabis extract, particularly its viscosity, stickiness, and low bioavailability when applied topically, limit its use in dermatology.

View Article and Find Full Text PDF

The increasing incidence of dermatophytic infections and rising resistance to conventional antifungal agents necessitates the exploration of alternative therapies. This study investigates the antifungal potential of Curcuma longa rhizome extract against dermatophytes, particularly Trichophyton species, through a combination of in vitro and in silico techniques. The methanolic extract of Curcuma longa was evaluated for its antifungal efficacy using the disc diffusion method against Trichophyton mentagrophytes, Trichophyton indotineae, and Trichophyton interdigitale.

View Article and Find Full Text PDF

This study evaluated a lateral flow dermatophyte antigen kit (Kit) for rapid diagnosis of feline dermatophytosis. The Kit, originally used for human onychomycosis, was tested on 20 healthy cats and six cats with dermatophytosis. Hair samples from healthy cats yielded negative Kit results, although fungal culture detected environmental fungi in 4 of 20 cases.

View Article and Find Full Text PDF