A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Eucalyptol Ameliorates Dysfunction of Actin Cytoskeleton Formation and Focal Adhesion Assembly in Glucose-Loaded Podocytes and Diabetic Kidney. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Scope: Podocytes are a component of glomerular filtration barrier with interdigitating foot processes. The podocyte function depends on the dynamics of actin cytoskeletal and focal adhesion crucial for foot process structure. This study investigates the renoprotective effects of eucalyptol on the F-actin cytoskeleton formation and focal adhesion assembly in glucose-loaded podocytes and diabetic kidneys.

Methods And Results: Eucalyptol at 1-20 µm reverses the reduction of cellular level of F-actin, ezrin, cortactin, and Arp2/3 in 33 mm glucose-loaded mouse podocytes, and oral administration of 10 mg kg eucalyptol elevates tissue levels of actin cytoskeletal proteins reduced in db/db mouse kidneys. Eucalyptol inhibits podocyte morphological changes, showing F-actin cytoskeleton formation in cortical regions and agminated F-actin along the cell periphery. Eucalyptol induces focal adhesion proteins of paxillin, vinculin, talin1, FAK, and Src in glucose-exposed podocytes and diabetic kidneys. Additionally, GTP-binding Rac1, Cdc42, Rho A, and ROCK are upregulated in glucose-stimulated podocytes and diabetic kidneys, which is attenuated by supplying eucalyptol. Rho A gene depletion partially diminishes GSK3β induction of podocytes by glucose.

Conclusion: Eucalyptol ameliorates F-actin cytoskeleton formation and focal adhesion assembly through blockade of the Rho signaling pathway, entailing partial involvement of GSK3β, which may inhibit barrier dysfunction of podocytes and resultant proteinuria.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mnfr.201900489DOI Listing

Publication Analysis

Top Keywords

focal adhesion
20
cytoskeleton formation
16
podocytes diabetic
16
formation focal
12
adhesion assembly
12
f-actin cytoskeleton
12
eucalyptol
8
eucalyptol ameliorates
8
assembly glucose-loaded
8
podocytes
8

Similar Publications