98%
921
2 minutes
20
Understanding interaction force versus distance profiles of supported lipid bilayers (SLBs) is relevant to a number of areas, which rely on these model systems, including, e.g., characterization of ligand/receptor interactions or bacterial adhesion. Here, the stability of 4 different SLB architectures was compared using the surface forces apparatus (SFA) and atomic force microscopy (AFM). Specifically, the outer envelope of the bilayer systems remained constant as 1,2-dipalmitoyl--glycero-3-phosphocholine (DPPC). The inner layer was varied between DPPC and 1,2-dipalmitoyl-3-trimethylammonium-propane (DPTAP) both on mica, and self-assembled monolayers (SAMs) of hexadecanethiol and the polymer-tethered diphytanylglycerol-tetraethylene glycol-lipoid acid (DPhyTL) on smooth gold surfaces. In that same order these gave an increasing strength of interaction between the inner layer and the supporting substrate and hence improved stability under highly adhesive conditions. Detachment profiles from highly charged and highly adhesive contacts were characterized, and approach characteristics were fitted to DLVO models. We find increasing stability under highly adhesive loads, approaching the hydrophobic limit of the adhesive energy between the inner and outer layers for the SAM-based systems. For all four SLBs we further compare AFM surface topographies, which strongly depend on preparation conditions, and the DLVO fitting of the SFA approach curves finds a strong charge regulation behavior during interaction, dependent on the particular model system. In addition, we find undulation characteristics during approach and separation. The increased stability of the complex architectures on a gold support makes these model systems an ideal starting point for studying more complex strongly adhesive/interacting systems, including, for example, ligand/receptor interactions, biosensing interactions, or cell/surface interactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.9b01942 | DOI Listing |
Proteomics Clin Appl
September 2025
Institute of Biochemistry, Center for Preventive Doping Research, German Sport University Cologne, Cologne, Germany.
Purpose: Hormonal contraceptives are linked to a higher prevalence of depressive symptoms. Given their popularity in Western countries, understanding the biochemical effects on neuronal cells is crucial to minimizing mental health risks.
Experimental Design: Neural progenitor cells were treated with ethinyl estradiol (EE) and levonorgestrel (LNG), two synthetic sex hormones commonly used in oral contraception, and S-23, a selective androgen receptor modulator developed as a potential synthetic sex hormone for male hormonal contraception.
J Prosthet Dent
September 2025
Associate Professor, School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan, ROC. Electronic address:
Statement Of Problem: While valued for their durability in dental prosthetics, polyaryletherketone (PAEK) materials, known for their chemical inertness and low surface energy, pose significant challenges in achieving durable adhesion to resin cements, a critical factor for the long-term success of dental restorations.
Purpose: This study evaluates the novel application of a methyl methacrylate-urethane dimethacrylate (MMA-UDMA) bonding primer following handheld nonthermal plasma (HNP) treatment to enhance the bonding performance and aging durability of PAEK materials with varying microfiller compositions, addressing the persistent challenge of achieving long-term adhesion in dental restorations.
Material And Methods: Three PAEK types, ceramic-filled polyetheretherketone (PEEK), titanium dioxide-filled polyetherketoneketone (PEKK), and PEEK with disk shape (Ø10×2.
J Prosthodont Res
September 2025
School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.
Purpose: This study aimed to evaluate the performance of 3D-printed denture base resins (DBRs) compared with conventionally printed DBRs, examine their biofilm formation and physical properties, and determine the viability of 3D-printed DBRs as a superior alternative in removable prosthodontics.
Methods: The DBR samples were fabricated using traditional packing (TRA), milling (MIL), and 3D printing (3DP) methods. All samples were serially polished with an abrasive paper.
Exp Neurol
September 2025
Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA. Electronic address:
Synapse refinement through the elimination of excess synapses is crucial for proper neuronal circuitry during development and adulthood, and the phagocytic activity of astrocytes plays an important role in this process. Failure to remove excess synapses can lead to neurological and neurodevelopmental disorders like epilepsy and autism spectrum disorder (ASD). The adhesion G protein-coupled receptor BAI1/ADGRB1 contributes to phagocytosis in various tissues, including the clearance of apoptotic myoblasts in skeletal muscle and epithelial cells in the intestine.
View Article and Find Full Text PDFMol Biol Cell
September 2025
Department of Cell and Developmental Biology, Vanderbilt University School of Medicine Basic Sciences, Nashville, TN, USA.
Cardiac sarcomere assembly is a highly orchestrated process requiring integration between intracellular contractile machinery and extracellular adhesions. While α-actinin-2 (ACTN2) is well known for its structural role at the cardiac Z-disc, the sarcomere border, the function of the "non-muscle" paralog α-actinin-1 (ACTN1) in cardiac myocytes remains unclear. Using human induced pluripotent stem cell-derived cardiac myocytes (hiCMs), we demonstrate that siRNA-mediated depletion of ACTN1 disrupts sarcomere assembly, and that exogenous re-introduction of ACTN1 but not ACTN2 restores assembly, revealing non-redundant functions.
View Article and Find Full Text PDF