Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Aggregation-induced emission (AIE) materials present unique solid-state fluorescence. However, there remains a challenge in the switching of fluorescence quenching/emitting of AIE materials, limiting the application in information encryption. Herein, we report a composite of tetraphenylethylene@graphene oxide (TPE@GO) with switchable microstructure and fluorescence. We choose GO as a fluorescence quencher to control the fluorescence of TPE by controlling the aggregation structure. First, TPE coating with an average thickness of about 31 nm was deposited at the GO layer surface, which is the critical thickness at which the fluorescence can be largely quenched because of the fluorescence resonance energy transfer. After spraying a mixed solvent (good and poor solvents of TPE) on TPE@GO, a blue fluorescence of TPE was emitted during the drying process. During the treatment of mixed solvents, the planar TPE coating was dissolved in THF first and then the TPE molecules aggregated into nanoparticles (an average diameter of 65 nm) in HO during the volatilization of THF. We found that the fluorescence switching of the composite is closely related to the microstructural change of TPE between planar and granular structures, which can make the upper TPE molecules in and out of the effective quenching region of GO. This composite, along with the treatment method, was used as an invisible ink in repeated information encryption and decryption. Our work not only provides a simple strategy to switch the fluorescence of solid-state fluorescent materials but also demonstrates the potential for obtaining diverse material structures through compound solvent treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.9b12421DOI Listing

Publication Analysis

Top Keywords

fluorescence
11
tetraphenylethylene@graphene oxide
8
mixed solvents
8
repeated encryption
8
encryption decryption
8
aie materials
8
tpe
8
fluorescence tpe
8
tpe coating
8
tpe molecules
8

Similar Publications

Carbon dots (CDs) represent a new class of nontoxic and sustainable nanomaterials with increasing applications. Among them, bright and large Stokes-shift CDs are highly desirable for display and imaging, yet the emission mechanisms remain unclear. We obtained structural signatures for the recently engineered green and red CDs by ground-state femtosecond stimulated Raman spectroscopy (FSRS), then synthesized orange CDs with similar size but much higher nitrogen dopants than red CDs.

View Article and Find Full Text PDF

Indocyanine green (ICG) is a well-established near-infrared dye which has been used clinically for several decades. Recently, it has been utilised for fluorescence-guided surgery in a range of solid cancer types, including sarcoma, with the aim of reducing the positive margin rate. The increased uptake and retention of ICG within tumours, compared with normal tissue, gives surgeons a visual reference to aid resection when viewed through a near-infrared camera.

View Article and Find Full Text PDF

Phosphole-based fluorophores are attractive dyes for bioimaging due to their relatively compact molecular structures, strong fluorescence up to the near-infrared region with large Stokes shifts, and remarkable resistance to photobleaching. Therefore, the development of efficient and chemoselective coupling methods for functionalizing phospholes is of significant interest for biomolecular labeling. Herein, we describe the synthesis of novel P-aminophospholes and their use for direct conjugation to cysteinyl peptides under mild conditions.

View Article and Find Full Text PDF

Time-resolved data acquisition is crucial for compositional analysis using Laser-Induced Breakdown Spectroscopy (LIBS). It can be managed by adjusting the delay time and gate width of the spectrometer. This study describes the compositional analysis of molybdenum (Mo) ore utilizing charge coupled device (CCD) and intensified charge-coupled device (ICCD) based LIBS systems.

View Article and Find Full Text PDF

Replication-competent adenovirus reporters utilizing endogenous viral expression architecture.

J Virol

September 2025

Genome Regulation and Cell Signaling, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, Pennsylvania, USA.

Unlabelled: Adenoviruses are double-stranded DNA viruses widely used as platforms for vaccines, oncolytics, and gene delivery. However, tools for studying adenoviral gene expression in real time during infection remain limited. Here, we describe a set of fluorescent and bioluminescent reporter viruses built using the modular AdenoBuilder reverse genetics system and informed by high-resolution maps of Ad5 transcription.

View Article and Find Full Text PDF