Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

4,6-Dihydroxysalicylic acid was activated under air to catalyze the one-pot oxidative condensation reaction of benzylamines with acetophenones in the presence of BF·EtO, affording 2,4,6-trisubstituted pyridines in yields of 59-91%. During this metal-free oxidative condensation reaction, the benzylamines not only provided the aryl moiety at the 4-position of the pyridines but also acted as the nitrogen donor. This method can be applied to the metal-free synthesis of G-quadruplex binding ligands by the sequential addition of 4-chlorobutyryl chloride and pyrrolidine to the reaction system of the 2,4,6-trisubstituted pyridine synthesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6648211PMC
http://dx.doi.org/10.1021/acsomega.9b00999DOI Listing

Publication Analysis

Top Keywords

oxidative condensation
12
246-trisubstituted pyridines
8
metal-free synthesis
8
synthesis g-quadruplex
8
g-quadruplex binding
8
binding ligands
8
condensation reaction
8
reaction benzylamines
8
46-dihydroxysalicylic acid-catalyzed
4
acid-catalyzed oxidative
4

Similar Publications

A new series of dihydronaphthalen-1(2)-one derivatives were synthesized in high yields starting from commercially available 3,5,5-trimethylcyclohex-2-en-1-one 1a, aromatic aldehydes 2, and diethyl acetylenedicarboxylate. Reaction of 1a with the aldehydes produced the respective dienones 3, which could cycloadd to dialkyl acetylenedicarboxylate, either stepwise or , under aqueous/organocatalyzed (DMAP) conditions. The respective adducts 4, were produced efficiently a Diels-Alder-double bond isomerization-oxidative aromatization sequence and were characterized based on the analysis of their H and C NMR spectra.

View Article and Find Full Text PDF

The Friedländer quinoline synthesis represents a fundamental method for the construction of quinoline derivatives, a versatile class of heterocyclic compounds widely prevalent in pharmaceuticals and materials science. This synthesis traditionally involves the condensation of 2-aminoaryl ketones with carbonyl compounds, typically ketones or aldehydes, in the presence of an acid or base under reflux conditions. However, recent advancements have highlighted indirect approaches (starting from 2-aminobenzyl alcohol) to achieve the same quinoline framework, offering distinct advantages in selectivity, substrate scope, and functional group tolerance.

View Article and Find Full Text PDF

"Silatranization": Surface modification with silatrane coupling agents.

Adv Colloid Interface Sci

August 2025

Cracow University of Technology, Faculty of Chemical Engineering and Technology, Department of Biotechnology and Physical Chemistry, Warszawska 24, 31-155 Cracow, Poland; Photo4Chem, Lea 114, 30-133 Cracow, Poland; Photo HiTech Ltd., Bobrzyskiego 14, 30-348 Cracow, Poland. Electronic address: joanna

Silatranization, a specialized variant of silanization using silatrane compounds, is emerging as a powerful strategy to functionalize material surfaces. Compared to conventional silane coupling agents, silatranes exhibit remarkable hydrolytic stability and enhanced resistance to self-condensation, enabling controllable, water-independent formation of a polysiloxane self-assembled monolayer. This review critically examines the unique structure of silatranyl cages, emphasizing how the intramolecular N->Si bond and chelate effect modulate the silicon center's reactivity toward hydroxyl-decorated surfaces.

View Article and Find Full Text PDF

Bent-core nematic liquid crystals exhibit unique properties, including giant flexoelectricity and polar electro-optic responses, making them ideal for energy conversion and electro-optic applications. When confined in nanopores, they can stabilize chiral nanostructures, enhance polar order, and enable defect-driven switching - offering potential in nanofluidics, sensing, and adaptive optics. The thermotropic ordering of the bent-core dimer CB7CB confined in anodic aluminum oxide (AAO) and silica membranes with precisely engineered cylindrical nanochannels - ranging from just a few nanometers to several hundred nanometers-is examined.

View Article and Find Full Text PDF

Volcanic emission of reduced sulfur species shaped the climate of early Mars.

Sci Adv

September 2025

Department of Earth and Planetary Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin, TX, USA.

Sulfur and other volatiles could be transported from the martian interior to surface through magmatic processes, including mantle melting, magma differentiation, and degassing. However, these processes were not fully integrated in past sulfur cycling models because of complexity from the gas-melt interactions in chemically and dynamically evolving magmatic systems with multicomponent volatiles. Here, we incorporate these processes to simulate how sulfur, carbon, and hydrogen degas from martian melts.

View Article and Find Full Text PDF